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EXECUTIVE SUMMARY  
Previous studies have indicated that fractionated reclaimed asphalt pavement 

(FRAP) can be suitably utilized as a partial replacement of coarse aggregate in concrete for 

pavement applications. While previous research studied the use of FRAP containing 

dolomite coarse aggregate, this study investigates the potential of using FRAP sources 

containing steel furnace slag (SFS) aggregates. Because it is an industrial by-product, SFS 

aggregates have seen relatively few applications in concrete pavements and other bound 

applications, primarily because of the potential expansive nature of SFS. Depending on the 

type of SFS, the slag can contain significant quantities of unassimilated, or free, calcium 

oxide (CaO) and magnesium oxide (MgO), both of which expand when hydrated with water. 

This expansive property of SFS has limited its usage to unbound applications as well as an 

aggregate in asphalt pavement for improving abrasion resistance and maintaining surface 

friction. 

 A review of state construction specifications indicated that SFS is allowed in certain 

applications, such as asphalt pavements or unbound base courses, but no state currently 

permits its use in concrete or other cementitious-stabilized materials. A number of studies 

have been conducted on the use of SFS aggregate in concrete, and most results suggested 

that the concrete strength and durability could potentially be improved. With regard to the 

properties and performance of SFS FRAP, past literature results clearly indicate that the 

deleterious expansion of the SFS may be significantly reduced because of the asphalt 

coating.  

 The materials for this investigation included three (virgin) SFS sources and three 

SFS FRAP sources. The SFS samples were sourced from basic oxygen furnace (BOF) slag, 

electric arc furnace (EAF) slag, and EAF/ladle metallurgy furnace (LMF) slag stockpiles. The 

three SFS FRAP samples were obtained from Tollway projects around Chicago, Illinois, and 

approximately one-third of the total aggregate content consisted of BOF slag aggregates. All 

six sources had similar chemical and mineralogical compositions to SFS compositions 

reported in the literature. A complexometric titration with an ethylene glycol extraction 

technique was conducted in conjunction with thermogravimetric analysis to estimate the 

total free CaO content of the samples. The virgin SFS samples had high (3.4%) to low 

(<0.1%) free CaO contents, depending on the SFS type, and the SFS in the FRAP 

contained significant free CaO contents at around 2.9% to 4.2%, which corresponded to 

estimated total free CaO contents of 1.0% to 1.5% in the SFS FRAP. The free MgO content 

was also estimated to range from 0.2% to 2.2% for the virgin SFS sources. 

 In order to test the expansive characteristics of the virgin SFS and the SFS FRAP, 

compacted samples were subjected to an autoclave environment with steam pressure and 

temperature at 300 psi and 420°F, respectively, for three hours. As expected, the samples 

with high free CaO contents expanded the most. The virgin BOF slag sample with 3.4% free 

CaO expanded by 8.8% while the virgin EAF slag sample with <0.1% free CaO expanded by 

only 0.1%. The SFS FRAP samples expanded minimally or contracted, as some of the 

asphalt mobilized and filled the voids between particles and as the β-dicalcium silicate in the 

SFS converted to γ-dicalcium silicate, which resulted in particle disintegration and specimen 

contraction. When the SFS FRAP asphalt binder coating was removed, the samples 

expanded significantly (2.1% to 6.6%). Autoclave tests with unreactive dolomite FRAP also 
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contracted because of the asphalt mobilizing and filling voids. Overall, the expansion tests 

findings indicated that the asphalt coating appears to prevent or hinder the hydration of the 

free CaO and free MgO in the SFS FRAP. Thermal analysis of the post-autoclaved SFS 

materials indicated that both the free CaO and free MgO were being hydrated by the 

autoclave environment. 

 Concrete specimens with a ternary cementitious blend (65% Type I portland cement, 

25% ground granulated blast furnace slag, and 10% Class C fly ash) were cast to test the 

effects of SFS FRAP at 20% and 50% volume replacement levels of the dolomitic coarse 

aggregate. The concrete with SFS FRAP behaved similar to concrete with dolomite FRAP, 

i.e., as the SFS FRAP content increased, the concrete strength and modulus decreased. 

The compressive and split tensile strengths were statistically similar between the concrete 

with SFS FRAP and dolomite FRAP, suggesting that the presence of the SFS in the FRAP 

did not impact the concrete strength. The flexural strength was statistically higher for 

concrete with SFS FRAP compared with dolomite FRAP. The static modulus of elasticity 

was statistically higher for concrete with SFS FRAP compared with dolomite FRAP as 

expected with a stiffer SFS aggregate. The concrete fracture properties were statistically 

similar between the mixes with and without SFS FRAP, with the exception of the critical 

crack tip opening displacement and initial fracture energy for the mix with 50% SFS FRAP. 

The concrete fracture properties for mixes with 100% coarse virgin SFS (BOF and EAF) 

were statistically greater than the control concrete fracture properties. The drying shrinkage 

was slightly higher for mixes with SFS FRAP relative to the control and statistically greater at 

later ages. For concrete with 100% coarse virgin SFS, greater shrinkage was obtained 

relative to concrete containing SFS FRAP. In all shrinkage mixtures (virgin, SFS, and SFS 

FRAP), the aggregate gradations were not the same and the SFS FRAP had higher asphalt 

content. Finally, the freeze/thaw durability testing indicated that concrete with SFS FRAP or 

virgin SFS can be freeze/thaw resistant. After 300 freeze/thaw cycles, the mix with 50% SFS 

FRAP had a net durability factor of 80%, which was the only mix that had a final durability 

factor less than 99%. Continuing the freeze/thaw cycles significantly compromised the 

durability of the mixes with SFS FRAP, resulting in net durability factors of 88% and 53% for 

the mixtures with 20% and 50% SFS FRAP, respectively. The reduction in freeze/thaw 

durability was likely caused by the asphalt coating on the FRAP particles rather than the 

SFS in the FRAP.  

 Autoclave expansion testing of the SFS aggregate (extracted or virgin) correlated 

strongly with the free CaO contents. The Tollway can use the autoclave test and free CaO 

and post-autoclave MgO tests to determine the best application for SFS (asphalt, unbound, 

or concrete). SFS FRAP did not necessarily show any significant net expansion in the 

autoclave, but this can be misleading because of the asphalt filling the voids and dicalcium 

silicate phase conversion. Over time, it is possible that moisture ingress could react with 

some free CaO or free MgO, resulting in deleterious expansion in concrete. Therefore, any 

SFS FRAP with significant amounts of free CaO and MgO should not be used in paving 

concrete. If SFS (in FRAP or virgin) was found to be chemically innocuous, then concrete 

with virgin SFS or SFS FRAP was shown to exhibit suitable strength and durability 

properties. SFS FRAP or SFS aggregates with potential deleterious expansion in stabilized 

materials should be further tested to determine its suitability for unbound applications.  
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CHAPTER 1 INTRODUCTION  
 

The previous work at the University of Illinois at Urbana-Champaign has clearly 

demonstrated that fractionated reclaimed asphalt pavement (FRAP) can be appropriate for 

usage in concrete pavements at coarse aggregate replacement levels up to 50% (Brand et al. 

2012; Brand and Roesler 2014). Additional studies by the authors have also demonstrated that, 

while coarse FRAP reduces the concrete strength, the concrete slab capacity can be similar if 

not greater than virgin concrete, mainly because of the similar fracture properties (Brand et al. 

2013, 2014). Both of the previous studies only considered coarse FRAP that had conventional 

virgin coarse aggregates (i.e. dolomite and quartz). With the possibility of some of the Tollway’s 

FRAP millings containing some percentage of steel furnace slag (SFS), the concrete results 

from the previous study need to be validated or updated to consider this new source type.  

Aggregates produced from SFS are of high quality, durable, and have good frictional 

quality, and, as a result, SFS aggregates have found usage in flexible pavement applications for 

its skid resistance, stripping resistance, stability, and resistance to rutting (FHWA 1998). The 

2012 world output of SFS was on the order of 150 to 230 million tons, while in the United States 

the amount of iron and steel-making slag was around 17 to 22 million tons (van Oss 2013). The 

hard and abrasion resistant properties of SFS aggregate have made it a good candidate for 

usage in hot-mix asphalt (HMA) pavement, as fill or embankment material, as railroad ballast, 

and for snow and ice control (Collins and Ciesielski 1994). After adequate weathering, Dunster 

(2002) reported that SFS could be used for roadway bases or subbases, surface wearing 

courses, armour stones, and as aggregates in specific dense concrete applications (such as 

sea defense barriers, although adequate weathering of the SFS is critical).  

 
1.1 THE USE OF SFS AGGREGATES IN PAVEMENTS 

Few states presently allow the usage of SFS in highway applications, but a number of 

states have been reported to have conducted studies on applications of SFS aggregates. It was 

reported in 1976 that Alabama was routinely using SFS for highway bases or subbases while 

California, Missouri, and Pennsylvania were conducting field experiments with steel slag in 

asphalt pavements (Collins 1976). NCHRP 166 (Miller and Collins 1976) reported that California 

and Missouri were conducting field studies with SFS in asphalt pavements and Pennsylvania 

was conducing field studies with open hearth slag (a type of SFS) in cement-treated bases and 

in asphalt wearing courses, while Ohio was using SFS in asphalt and concrete highway 

pavement applications and Alabama was using open hearth slag in highway base courses. In 

1991, there were nine states that allowed the use of SFS in highway construction, four of which 

allowed its application in wearing courses (Ahmed 1991; Ahmed and Lovell 1992). As of 1994, 

at least 11 states used SFS aggregates in asphalt pavement (Alabama, California, Illinois, 

Indiana, Kentucky, Louisiana, Michigan, Missouri, Pennsylvania, South Carolina, and West 

Virginia); another two states were using SFS as a subbase or embankment material (Maryland 

and New York); 16 states had specifications for use of SFS aggregate in asphalt pavements 

(Alabama, California, Colorado, Illinois, Indiana, Kansas, Kentucky, Michigan, Minnesota, 

Missouri, Pennsylvania, South Carolina, Tennessee, Texas, Virginia, and West Virginia); and no 

states had specifications for SFS aggregate in concrete (Collins and Ciesielski 1994). As of 

2009, there were 13 states in the US that permitted the use of SFS in HMA, while other 
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allowable applications are very limited: four states allowed the use in non-structural pavement 

surface treatments, three states allowed use as an embankment material, and two states 

allowed use in concrete pavements (NCHRP 2013). Figure 1 depicts the number of applications 

allowed by states for SFS. Indiana rated “good” general performance of SFS in concrete 

pavements, and Colorado was the only state to rate “poor” general performance of steel slag in 

asphalt pavements (NCHRP 2013). The only advantage of using SFS in asphalt pavements was 

reported as friction by Iowa, while the disadvantages were reported as material property issues 

by Iowa, poor experience by Colorado, and not cost effective and construction difficulties by 

Virginia (NCHRP 2013). One report concluded that the utilization of SFS in roadways has low 

potential for use in cement-bound layers and no potential for use as aggregate in concrete and 

that the best potential was in asphalt-bound layers or surface dressings (Collins and Sherwood 

1995).  

 

 
Figure 1. Results of a 2009 survey indicating the number of applications a given state allows for 

SFS. Source: NCHRP (2013) 

 

In a survey of the state construction specifications conducted by this project, it was 

found that a number of states allow the use of SFS, typically in asphalt pavements. Some 

states, however, specify the use of slag, but do not further define the allowable types of slags 

(i.e., SFS, blast furnace slag, etc.). Of the states that allow the use of SFS aggregates, only a 

few further specify an expansion limit requirement. A summary of the review is as follows: 

 Illinois allows the use of SFS aggregate as a fine or coarse aggregate in HMA (IDOT 2012, 

Sections 1003.03 and 1004.03). 

 Indiana permits the use of SFS in certain HMA applications if the deleterious content is less 

than 4.0% by Indiana Test Method (ITM) 219 (INDOT 2014, Section 904.01). Indiana also 

has provisions for the use of reclaimed asphalt pavement with SFS aggregate.  
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 Pennsylvania requires that the SFS be weathered for at least 6 months in wet stockpiles, 

and the material cannot be used until the expansion is less than 0.50% by Pennsylvania 

Test Method (PTM) 130 (PennDOT 2011a, Sections 703.1 and 703.2). The specification 

states: “Fine aggregate manufactured from steel slag may not be used in cement concrete 

or mortar mixtures” and “Aggregate manufactured from steel slag is not acceptable for pipe 

or structure backfill or in cement concrete. Steel slag may be used for subbase, selected 

granular material, shoulders, selected material surfacing, and in bituminous surface courses” 

(PennDOT 2011a, Sections 703.1 and 703.2). 

 Ohio lists ASTM D4792 as an optional test for SFS fine aggregates with a guide limit of 

1.5% expansion, although the SFS can be used as the coarse or fine aggregate in asphalt 

base or asphalt intermediate courses (ODOT Supplement 1071 2008; ODOT 2013, Section 

401.03). An autoclave disruption test is also listed as an optional test method in ODOT 

Supplement 1071. Section 703.14 includes extensive details for other non-pavement uses of 

SFS, in both confined and unconfined applications.  

 West Virginia requires that the SFS be weathered for at least 6 months in wet stockpiles, 

and the material cannot be used until the expansion is less than 0.50% by ASTM D4792 

(WVDOH 2010, Section 703.3.1). However, if the SFS is used in HMA, the expansion 

requirement is waived, and if the SFS is not confined, then the expansion requirement could 

be waived. The specification also states that: “Steel slag shall not be used in any item where 

expansion might be detrimental. Such items include, but not necessarily limited to, the 

following: aggregate for Portland Cement concrete, backfill around drainage structures, 

piers, abutments, walls, etc.” (WVDOH 2010, Section 703.3.1). 

 New Jersey permits the use of up to 30% SFS aggregate in soils, provided that the 

expansion is 0.50% by ASTM D4792 (NJDOT 2007, Section 901.11).  

 Kansas allows the use of crushed SFS in HMA (KDOT 2007, Section 1103.2). There is no 

mention of an expansion requirement, although it is stated that the crushed SFS is to be 

from electric arc furnace slag.  

 Minnesota requires that the SFS be tested by ASTM D4792 and that the expansion be less 

than 0.50% before it can be used in asphalt mixtures (Mn/DOT 2014, Section 3139.2). 

 Missouri requires that the SFS be aged at least three months after crushing and screening 

before the material can be used as a coarse aggregate in asphalt pavements (MoDOT 

2011, Section 1002). 

 In the 2006 Standard Special Provisions, California allowed the use of SFS for certain 

applications, such as an aggregate in HMA, as a special provision but also required that the 

SFS be aged at least three months (Caltrans 2006, SSP S8-M25). SFS aggregates are not 

allowed for use in concrete pavements.  

 South Carolina allows the use of “crushed slag” in concrete as a coarse aggregate, provided 

that the slag does not contain “free lime in deleterious quantities” (SCDOT 2007, Section 

701.2.10.2). Specifically for use in HMA, the South Carolina specification requires that the 

slag be stockpiled and meet an expansion requirement of less than 0.50% by ASTM D4792 

(SCDOT 2007, Section 401.2.2.4). 

 Alabama allows the use of “crushed slag” in asphalt wearing courses, subject to a limit on 

the amount of glassy particles in the slag (ALDOT 2012, Section 801.05).  
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 Colorado states that “crushed slag” may be used for aggregate bases and as an aggregate 

in HMA (CDOT 2011, Sections 703.03 and 703.04). However, the “crushed slag” is further 

specified in cover coat materials to be air-cooled blast furnace slag aggregate (Section 

703.05).  

 Arkansas permits SFS aggregates in asphalt surface treatments and as coarse aggregates 

in HMA and slurry seals, subject to limits on the aggregate durability (AHTD 2014, Sections 

403.01, 409.01, 418.02). 

The state construction specifications revealed that there was no specific mention of 

using SFS as an aggregate in concrete despite a Pennsylvania Department of Transportation 

survey reporting that California and Nebraska use or had used SFS in concrete pavements 

(PennDOT 2011b). In another document there was a mention of a concrete pavement in Texas 

with SFS aggregates, possibly constructed in the 1960s (TxDOT 1999). 

Internationally, other countries have limits and allowances on the use of SFS 

aggregates. Typical limits on the maximum free lime content are at 4.5-5.0% in order to use 

SFS aggregates in an unbound pavement application (Smith and Collis 2001). In Germany, SFS 

can be used as an unbound layer if the free lime content is less than 7% and can be used in an 

asphalt layer if the free lime content is less than 4% (Motz and Geiseler 2000). In Brazil, SFS 

can be used in pavements (base and subbase) when the expansion by PTM 130 is less than 

3.0% (da Silveira et al. 2005). A Federal Highway Administration report stated that the 

Netherlands and Belgium limit the free lime content of SFS aggregates to 4.5% before it can be 

used in granular bases and that the material must be weathered for at least one year prior to 

use (FHWA 1998). The British standard requires that SFS aggregates be weathered prior to 

usage in unbound pavement applications (Smith and Collis 2001), and Maw (1991) reported 

that weathered SFS with free CaO contents as high as 4.5% have been successfully used in the 

United Kingdom in asphalt pavements. In Japan, the free CaO content is limited to 0.5% to be 

used as a construction material (Kim et al. 2014).  

ASTM D5106 (2013) is the specification for SFS aggregates to be used in asphalt 

pavements. For expansion, the D5106 standard specifies that ASTM D4792 should be used to 

evaluate the expansion potential for dense-graded materials, and that “aggregates that contain 

components subject to hydration, such as free lime (CaO), shall be obtained from sources 

approved by the purchaser on the basis of either satisfactory performance record, aging, or 

other treatment known to reduce potential expansion to a satisfactory level” (ASTM D5106 

2013).  

 

1.2 SCOPE OF THE REPORT 

As with the previous FRAP sources, the Illinois Tollway has produced excess stockpiles 

of SFS FRAP from maintenance and rehabilitation activities. The main limitation to using SFS 

aggregates in concrete is the presence of free calcium oxide (CaO) and free magnesium oxide 

(MgO), both of which expand when reacted with water, which can cause cracking and 

accelerated deterioration. With the SFS aggregate already being in service in the asphalt 

concrete, the main question is whether free oxides are still present and will have deleterious 

expansion potential if utilized in concrete pavement. The scope of this study is to investigate the 

expansion potential of SFS FRAP and to ascertain if the SFS in the FRAP will deleteriously 

impact the concrete performance.   
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CHAPTER 2 LITERATURE REVIEW 
 

2.1 SFS AGGREGATE PRODUCTION AND COMPOSITION 
Modern SFS is the by-product produced by one of two methods: in a basic oxygen 

furnace (BOF), where iron is converted to steel, or in an electric arc furnace (EAF), where steel 

is produced by melting scrap steel (Shi 2004). BOF slag is also sometimes called Linz-Donawitz 

(LD) or LD-converter slag. Though now obsolete and very uncommon, another type of SFS is 

known as open hearth furnace (OHF) slag. The BOF process involves a furnace being charged 

with hot liquid metal (sourced from the blast furnace), scrap, and fluxes (lime and dolomitic 

lime), which is then injected with pressurized oxygen; the purpose of oxygen injection is to 

combine with the impurities to form the SFS (Shi 2004). The EAF process does not use hot 

liquid metal but instead cold metal scrap that is melted by the heat generated from electric arcs 

that pass from graphite electrodes (Shi 2004); as with BOF, oxygen is injected in the EAF 

process to produce the SFS. Once the molten metal and slag are separated, the steel is 

transferred to a ladle for additional refining, which involves the production of additional slag, 

known as ladle furnace slag, which has different properties than the SFS. The molten SFS can 

then be cooled in a number of methods, including cooling in air, spraying with water, quenching 

with air or water, and shallow box chilling (Shi 2004).  

Chemically, SFS is mainly composed of calcium oxide (CaO), iron (II) oxide (FeO), silica 

(SiO2), and magnesium oxide (MgO), as can be seen in Table 1, which also depicts the 

variability in composition between BOF and EAF slags. Typically, steel slags have iron oxide 

contents greater than 20% by weight, a lime-to-silica ratio greater than 7:3, and low (<0.2%) 

sulfur contents (Barnes and Strong 1980). In general, air-cooled SFS can contain the minerals 

merwinite (3CaO-MgO-2SiO2), tricalcium silicate (3CaO-SiO2), dicalcium silicate (2CaO-SiO2), 

rankinite (3CaO-2SiO2), wollastonite (CaO-SiO2), diopside (CaO-MgO-2SiO2), monticellite 

(CaO-MgO-SiO2), calcium aluminate (CaO-Al2O3), calcium ferrite (CaO-Fe2O3), magnesium 

silicate (2MgO-SiO2), various sulfides (CaS, MnS, FeS), lime (CaO), periclase (MgO), iron 

oxides (FeO, Fe2O3), and a solid solution phase FeO-MnO-CaO-MgO (Shi 2004). Motz and 

Geiseler (2000) reported that the main phases for both BOF and EAF slags are dicalcium 

silicate (2CaO-SiO2), dicalcium ferrite (2CaO-Fe2O3), and wüstite (FeO). Similarly, Maw (1991) 

stated that the dicalcium silicate, wüstite, and ferrite phases are the most prevalent phases in 

SFS. In BOF slags, the wüstite forms as a calciowüstite unless there is a higher magnesium 

content in the slag, in which case a magnesiowüstite forms, and in EAF slags, the wüstite forms 

as magnesiowüstite (Geiseler 1995). Tricalcium silicate is often only found in steel slags with 

high CaO/SiO2 ratios (Robinson 2002). 

By weight, BOF slags consist mainly of 30-60% dicalcium silicate (2CaO-SiO2), 0-30% 

tricalcium silicate (3CaO-SiO2), 0-10% free CaO, 10-40% wüstite (FeO), and 5-20% dicalcium 

ferrite (2CaO-Fe2O3) (Balcázar et al. 1999). Around 35-85% of the total volume of the SFS may 

consist of the silicate phase (Maw 1991). Another reference reported that, by weight, calcic steel 

slags consist of 30-60% dicalcium silicate (2CaO-SiO2), 0-20% tricalcium silicate (3CaO-SiO2), 

0-10% other silicate phases, 15-30% magnesiocalciowustite (RO-phase, a solid solution of 

(Fe,Mn,Mg,Ca)O), 10-25% dicalcium ferrite (Ca2(Fe,Al,Ti)2O5), 0-5% magnetite-type phase 

((Fe,Mn,Mg)3O4), 0-15% lime phase ((Ca,Fe)O), 0-5% periclase phase ((Mg,Fe)O), and 0-1% 
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fluorite (CaF2) (Goldring and Juckes 1997). About 1% of the composition of SFS may also be 

free metal (Robinson 2002).  

Sourced from steel plants in Indiana, Yildirim and Prezzi (2011) found that BOF slags 

contained major phases of portlandite (Ca(OH)2), srebrodolskite (Ca2Fe2O5), and merwinite 

(Ca3Mg(SiO4)2) and minor phases of larnite (Ca2SiO4), manganoan calcite ((Ca,Mn)CO3), lime 

(CaO), and dolomite (CaMg(CO3)2, and the EAF slags contained major phases of portlandite 

(Ca(OH)2) and mayenite (Ca12Al14O33) and minor phases of larnite (Ca2SiO4), lime (CaO), 

uvavorite (Ca3Cr2(SiO4)3), wollastonite ((Ca,Fe)SiO3), and periclase (MgO).  

Overall, the mineralogical compositions of SFS can be variable, particularly between 

different sources, and contain various other compounds, as shown in Table 2. In addition, there 

is some evidence to support that the composition of SFS aggregates is not uniform in that the 

interior may have a different composition than the exterior (Coomarasamy and Walzak 1995).  

The composition of SFS changes over time, such as with weathering. One study found 

that BOF slag aggregates weathered outside for three months had developed a white powder 

on the surface, and further analysis revealed that the powder consisted of calcite (CaCO3), 

calcium silicate hydrate, and calcium carboaluminate hydrate (Kawamura et al. 1983). The 

presence of CaCO3 has also been found on the surface and in fine cracks in LD-slag samples 

(Thomas 1983). Another study also found that weathered BOF slag had higher calcite and 

calcium hydroxide contents (Belhadj et al. 2012). Tufa, a porous calcium carbonate precipitate, 

was found to form and clog bases and subbases with BOF slag aggregates, and it was 

concluded that calcium oxide, magnesium oxide, calcium hydroxide, and calcium carbonate 

have the potential to precipitate tufa (Gupta et al. 1994). However, even though weathering 

does reduce the content of free CaO, the reduction may not necessarily be sufficient enough to 

prevent tufa formation (Gupta et al. 1994). In another study, samples of EAF slag aggregates 

were obtained from a 10-year old asphalt pavement and precipitates of gypsum (CaSO4-2H2O), 

melanterite (FeSO4-7H2O), and calcium silicates were found on the slag particle surface (Suer 

et al. 2009).  

High alloy steel EAF slags mainly consist of dicalcium silicates with no stabilizing 

components, so they often disintegrate into a fine powder (Balcázar et al. 1999) and are 

therefore unfit for civil engineering applications. In other steel slags, the dicalcium silicates are 

stabilized by the phosphorous pentoxide (P2O5) in the slag (Motz and Geiseler 2000). The 

dicalcium silicate that is present in SFS is in the β form, which is potentially metastable, 

although it is inactive in SFS (Emery 1982).  
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Table 1. Percent Chemical Composition Ranges for BOF and EAF Slags 

Compound 
BOF 
Slag 

EAF Slag 
(carbon 
steel) 

EAF Slag 
(alloy 
steel) 

BOF 
Slag 

EAF Slag 
(carbon 
steel) 

EAF Slag 
(alloy 
steel) 

BOF Slag 
(United 

Kingdom) 

EAF Slag 
(United 

Kingdom) 

BOF 
(South 
Africa) 

Silica (SiO2) 8-20 9-20 24-32 11-18 8-18 28-40 9-19 11-24 10-16 

Alumina (Al2O3) 1-6 2-9 3-7.5 1-5 3-10 2-8 0.5-3 5-18 -- 

Iron (II) Oxide 
(FeO) 

10-35 15-30 1-6 -- -- -- -- -- -- 

Total Iron (Fe) -- -- -- 14-22 20-30 0.4-3 24-45 5-30 17-23 

Calcium Oxide 
(CaO) 

30-55 35-60 39-45 45-54 25-35 34-48 33-51 31-50 50-60 

Free CaO -- -- -- 1-10 0-4 -- -- -- -- 

Magnesium 
Oxide (MgO) 

5-15 5-15 8-15 1-6 2-9 7-13 0.5-4 2-8 2-3 

Manganese (II) 
Oxide (MnO) 

2-8 3-8 0.4-2 -- -- 1.3-2.0 -- -- ~4 

Manganese (III) 
Oxide (Mn2O3) 

-- -- -- -- -- -- 3-10 6-22 -- 

Total Mn -- -- -- 1-5 2-8 -- -- -- -- 

Titanium Dioxide 
(TiO2) 

0.4-2 -- -- -- -- -- 0.5-1 0.3-1 ~3 

Sulfur (S) 
0.05-
0.15 

0.08-0.2 0.1-0.3 -- -- -- 0.05-0.15 0.04-0.4 -- 

Sulfite (SO3)       0.05-0.4 0.04-0.9 -- 

Phosphorus (P) 0.2-2 0.01-0.25 0.01-0.07 -- -- -- -- -- -- 

Phosphorus 
Pentoxide (P2O5) 

-- -- -- -- -- -- 0.8-1.8 0.03-1.8 -- 

Fluoride (F) -- -- -- -- -- -- 0.02-0.5 0.1-2.6 -- 

Sodium Oxide 
(Na2O) 

-- -- -- -- -- -- 0.05-0.1 0.05-0.3 -- 

Potassium Oxide 
(K2O) 

-- -- -- -- -- -- 0.02-0.1 0.04-0.4 -- 

Chromium (Cr) 0.1-0.5 0.1-1 0.1-2.0 0.1-0.3 0.5-2.2 -- -- -- -- 

Chromium (III) 
Oxide (Cr2O3) 

-- -- -- -- -- 1-10 -- -- -- 

CaO/SiO2 Ratio    2.8-4.4 1.7-4.0 1.3-1.6    

Reference Shi (2004) Balcázar et al. (1999) Gutt and Nixon (1979) 
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Table 2. Mineralogical Compositions of SFS from Various Studies 

Mineral EAF BOF and LD 

Silicates 

Larnite, belite, β-dicalcium 
silicate (β-Ca2SiO4) 

Abu-Eishah et al. (2012); Diener (2006); Ducman 
and Mladenovič (2011); Iacobescu et al. (2011); 
Luxán et al. (2000); Manso et al. (2004); Pellegrino 
et al. (2013); Pellegrino and Faleschini (2013); 
Rojas and de Rojas (2004); San-José et al. 
(2013); Tsakiridis et al. (2008); Yildirim and Prezzi 
(2011); Vázquezramonich and Barra (2001) 

Belhadj et al. (2012); Gupta et al. 
(1994); Kawamura et al. (1983); 
Mahieux et al. (2009, 2014); Poh et 
al. (2006); Vlcek et al. (2013); 
Wachsmuth et al. (1981); Waligora et 
al. (2010); Wang (1992); Xue et al. 
(2006); Yildirim and Prezzi (2011) 

Calcio-Olivine, γ-dicalcium 
silicate (γ-Ca2SiO4) 

  Gupta et al. (1994); Poh et al. (2006) 

α'-dicalcium silicate  
(α'-Ca2SiO4) 

 Gumieri et al. (2004) 

Alite, tricalcium silicate 
(Ca3SiO5) 

Manso et al. (2004); Tsakiridis et al. (2008);  

Gumieri et al. (2004); Mahieux et al. 
(2009, 2014); Poh et al. (2006); 
Wachsmuth et al. (1981); Wang 
(1992); Xue et al. (2006) 

Wollastonite (CaSiO3)   Yildirim and Prezzi (2011)** 

Ferroan wollastonite 
(Ca,Fe)SiO3) 

Yildirim and Prezzi (2011)   

Monticellite (CaMgSiO4) Diener (2006) Yildirim and Prezzi (2011)** 

Merwinite (Ca3Mg(SiO4)2) 

Diener (2006); Iacobescu et al. (2011); Qian et al. 
(2002); Rojas and de Rojas (2004); Yildirim and 
Prezzi (2011)**; Vázquezramonich and Barra 
(2001) 

Yildirim and Prezzi (2011) 

Akermanite (Ca2MgSi2O7)   Poh et al. (2006) 

Bredigite (Ca7Mg(SiO4)4) 
Abu-Eishah et al. (2012); Luxán et al. (2000); 
Rojas and de Rojas (2004); Vázquezramonich and 
Barra (2001) 

  

Kirschsteinite 
(Ca(Mg,Fe)SiO4) 

Qian et al. (2002); San-José et al. (2013)   

Nagelschmidite 
(2Ca2SiO4-Ca3(PO4)2) 

  Gupta et al. (1994) 

Glaucochroite 
((Ca,Mn)2SiO4) 

  Gupta et al. (1994)* 

Manganese calcium 
silicate (Mn0.8Ca0.2SiO3) 

 Gumieri et al. (2004) 

Gehlenite (Ca2Al2SiO7) 

Ducman and Mladenovič (2011); Iacobescu et al. 
(2011); Luxán et al. (2000); Rojas and de Rojas 
(2004); San-José et al. (2013); Tsakiridis et al. 
(2008); Vázquezramonich and Barra (2001) 

  

Hydrogrossular 
(Ca3Al2(SiO4,CO3(OH)3)) 

  Gupta et al. (1994) 

Goosecreekite  
(CaAl2SiO6-5H2O) 

  Gupta et al. (1994) 

Uvavorite (Ca3Cr2(SiO4)3) Yildirim and Prezzi (2011)   

Clinoenstatite (MgSiO3) Diener (2006); Vázquezramonich and Barra (2001)   

Wadsleyite ((Mg,Fe)2SiO4)   Gupta et al. (1994) 

Iscorite (Fe7SiO10) Nicolae et al. (2007);   

Slinoferrosilite (FeSiO3)   Gupta et al. (1994) 

Fayalite (Fe2SiO4) Nicolae et al. (2007) Wang (1992) 

Magnesium Fayalite 
((Fe,Mg)2SiO4)  

Gupta et al. (1994) 

Quartz (SiO2) Tsakiridis et al. (2008) 
Belhadj et al. (2012); Gupta et al. 
(1994) 

*Trace mineral; **probable mineral phase 
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Table 2 (continued). Mineralogical Compositions of SFS from Various Studies 

Mineral EAF BOF and LD 

Oxides 

Wüstite (FeO) 

Abu-Eishah et al. (2012); Ducman and 
Mladenovič (2011); Iacobescu et al. (2011); 
Manso et al. (2004); Pellegrino et al. (2013); 
Pellegrino and Faleschini (2013); Rojas and de 
Rojas (2004); San-José et al. (2013); Tsakiridis et 
al. (2008); Vázquezramonich and Barra (2001) 

Belhadj et al. (2012); Gupta et al. 
(1994); Kawamura et al. (1983); Vlcek 
et al. (2013); Wachsmuth et al. (1981); 
Waligora et al. (2010) 

Hematite (Fe2O3) 
Pellegrino et al. (2013); Pellegrino and Faleschini 
(2013); Rojas and de Rojas (2004); 
Vázquezramonich and Barra (2001) 

Kawamura et al. (1983); Yildirim and 
Prezzi (2011)** 

Magnetite (Fe3O4) 

Abu-Eishah et al. (2012); Iacobescu et al. (2011);  
Luxán et al. (2000); Rojas and de Rojas (2004); 
San-José et al. (2013); Tsakiridis et al. (2008); 
Vázquezramonich and Barra (2001) 

Gupta et al. (1994)*; Mahieux et al. 
(2009) 

Lime, calcium oxide (CaO) Manso et al. (2004); Yildirim and Prezzi (2011) 

Belhadj et al. (2012); Kawamura et al. 
(1983); Mahieux et al. (2009, 2014); 
Vlcek et al. (2013); Wachsmuth et al. 
(1981); Waligora et al. (2010); Yildirim 
and Prezzi (2011) 

Srebrodolskite (Ca2Fe2O5); 
dicalcium ferrite (2CaO-
Fe2O3) 

Manso et al. (2004); San-José et al. (2013) 

Belhadj et al. (2012); Gumieri et al. 
(2004); Gupta et al. (1994); Kawamura 
et al. (1983); Mahieux et al. (2009); 
Poh et al. (2006); Wachsmuth et al. 
(1981); Wang (1992); Waligora et al. 
(2010); Yildirim and Prezzi (2011) 

Mayenite (Ca12Al14O33) 
Iacobescu et al. (2011); Pellegrino et al. (2013); 
Pellegrino and Faleschini (2013); Tsakiridis et al. 
(2008); Yildirim and Prezzi (2011) 

  

Brownmillerite, ferrite 
(Ca2(Al,Fe)2O5) 

Ducman and Mladenovič (2011); Iacobescu et al. 
(2011); Pellegrino et al. (2013); Pellegrino and 
Faleschini (2013); Tsakiridis et al. (2008); 

Mahieux et al. (2014); Poh et al. 
(2006); Vlcek et al. (2013) 

Periclase, magnesium 
oxide (MgO) 

Pellegrino et al. (2013); Pellegrino and Faleschini 
(2013); Tsakiridis et al. (2008); Yildirim and 
Prezzi (2011) 

Belhadj et al. (2012); Gupta et al. 
(1994); Yildirim and Prezzi (2011)** 

Magnesioferrite (MgFe2O4) Luxán et al. (2000); Rojas and de Rojas (2004) Gupta et al. (1994) 

Magnesium iron oxide  
(Mg1-xFexO) 

 Gumieri et al. (2004) 

Calcium magnesium iron 
oxide (Ca2MgFe2O6) 

 Gumieri et al. (2004) 

Spinel (MgAl2O4) Diener (2006); Iacobescu et al. (2011); Gupta et al. (1994) 

Hausmannite 
((Mn,Mg)(Mn,Fe)2O4) 

  Gupta et al. (1994) 

Chromite (FeCr2O4) Ducman and Mladenovič (2011);   

Manganese oxides 
Luxán et al. (2000); Nicolae et al. (2007); Rojas 
and de Rojas (2004) 

  

Magnesium iron oxide 
((MgO)0.239(FeO)0.761) 

  Mahieux et al. (2009) 

Magnesium iron oxide 
((MgO)0.432(FeO)0.568) 

  Mahieux et al. (2014) 

Aluminum oxide (Al2O3) Abu-Eishah et al. (2012);   

RO Phase (FeO-MnO-
MgO solid solution) 

Qian et al. (2002) Xue et al. (2006) 

*Trace mineral; **probable mineral phase 
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Table 2 (continued). Mineralogical Compositions of SFS from Various Studies 

Mineral EAF BOF and LD 

Hydroxides 

Portlandite, calcium 
hydroxide (Ca(OH)2) 

Yildirim and Prezzi (2011); Vázquezramonich and 
Barra (2001) 

Belhadj et al. (2012); Gupta et al. 
(1994); Kawamura et al. (1983); 
Mahieux et al. (2009); Poh et al. 
(2006); Yildirim and Prezzi (2011) 

Vernadite (Mn(OH))   Gupta et al. (1994) 

Pyrochoite (Mn(OH)2)   Gupta et al. (1994) 

Carbonates  

Calcite, calcium carbonate 
(CaCO3) 

Yildirim and Prezzi (2011)**; Vázquezramonich 
and Barra (2001) 

Belhadj et al. (2012); Gupta et al. 
(1994); Kawamura et al. (1983); 
Mahieux et al. (2009); 

Magnesite (MgCO3)   
Gupta et al. (1994); Yildirim and Prezzi 
(2011)** 

Dolomite (CaMg(CO3)2)   
Gupta et al. (1994)*; Yildirim and 
Prezzi (2011) 

Ferroan dolomite 
(Ca(Fe0.33,Mg0.67)(CO3)2) 

  Gupta et al. (1994)* 

Manganoan calcite 
((Ca,Mn)CO3) 

  Yildirim and Prezzi (2011) 

Ankerite 
(Ca(Fe,Mg)(CO3)2) 

  Gupta et al. (1994)* 

Sulfides and Sulfates  

Alabandite (MnS)   Gupta et al. (1994)* 

Pyrite (FeS2)   Gupta et al. (1994)* 

Marcasite (FeS2)   Gupta et al. (1994) 

Pentahydrite (MgSO4-
5H2O) 

  Yildirim and Prezzi (2011)** 

Phosphates  

Berlinite (AlPO4)   Gupta et al. (1994) 

Other 

Iron (Fe) Diener (2006) 
Gumieri et al. (2004); Waligora et al. 
(2010) 

*Trace mineral; **probable mineral phase 

 

The trace element content is not very high in SFS, with the exception of chromium, as 

can be seen in Table 3. The chromium content of the slag is related to the type of the steel 

produced, so high alloyed steel will result in higher chromium contents in the slag (Balcázar et 

al. 1999). In general, though, leachates are not a critical issue with SFS (Emery 1982). The 

leaching of heavy metals from SFS is not very high, possibly because of the elements being 

bound in other phases; for example, in BOF slag, chromium and vanadium have been found to 

be in stable ferrous phases, though vanadium can also exist in the more reactive calcium 

silicate phases (Legret et al. 2010). Further study has suggested that chromium is present in 

BOF slag in the trivalent oxidation state, which is the less toxic and less mobile oxidation state 

and does not change oxidative forms upon leaching, whereas the vanadium is in a tetravalent 
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oxidation state in the BOF slag but oxidizes to the most toxic pentavalent state upon leaching 

(Chaurand et al. 2007).  

 

Table 3. Trace Element Contents (in mg/kg) for Steel Slags. Source: Balcázar et al. (1999) 

 
BOF Slag 

EAF Slag 
(carbon steel) 

EAF Slag 
(alloy steel) 

Arsenic (As) < 1 < 15 3 

Cadmium (Cd) < 1 < 30 < 1 

Total Chromium (Cr) 1000-3000 5000-22000 -- 

Copper (Cu) < 50 < 300 < 100 

Mercury (Hg) < 0.5 < 0.5 <0.5 

Nickel (Ni) <10 < 70 < 200 

Lead (Pb) < 10 < 90 < 30 

Zinc (Zn) < 150 < 900 < 30 

 

Free CaO in the slag can exist as a residual from the flux material and/or as a 

precipitated product from the molten slag (Shi 2004). While cooling, the tricalcium silicates 

present in the slag can decompose into dicalcium silicate and free CaO, but this free CaO is 

distributed in the matrix and does not react to cause volume expansion (Balcázar et al. 1999). 

The problematic free CaO forms that cause volume expansion are the coarser particles of 

excess CaO and unassimilated CaO (Balcázar et al. 1999); this free CaO was not able to 

dissolve completely into the matrix mainly because a given amount of lime needs to be added to 

the flux in order to meet the metallurgical objectives of the steel and to keep the phosphorus 

content low (Geiseler 1995). One study found that more than 90% of the total free CaO in an 

LD-slag was from CaO that was not fully assimilated in the matrix (Thomas 1983). Free MgO in 

the slag can be from dolomitic fluxes and/or the lining of the steel furnace (Shi 2004), and using 

dolomitic fluxes instead of lime fluxes results in a higher MgO content in the slag (Geiseler 

1996). Longer melting times for EAF slag compared with BOF slag results in higher magnesium 

contents, mainly from being leached from the furnace lining (Geiseler 1995). Thus, free CaO is 

a concern for both BOF and EAF slags, but free MgO is more likely to exist in EAF slags.  

Rojas and de Rojas (2004) assessed the composition of two EAF steel slags and found 

that the composition did not change significantly between aggregate sizes (0-6, 6-13, 13-23, 

and 23-50 mm). The EAF slags were found to be very crystalline. The pozzolanic activity of the 

EAF steel slag was also evaluated and it was found that the CaO content was essentially 

unreactive up to 90 days. Overall, the free CaO and free MgO contents, measured by chemical 

and leaching tests, were estimated to be relatively low at <0.1% and <1%, respectively.  

 

2.2 SFS AGGREGATE EXPANSION 
The deleterious components of SFS are primarily free lime (CaO) and free magnesium 

oxide (MgO), both of which react with water to form expansive compounds. Free lime forms 

strained calcium hydroxide Ca(OH)2, otherwise known as epizet, and magnesium oxide forms 

magnesium hydroxide Mg(OH)2. The increases in solid volumes in the reaction are 91.7% for 

Ca(OH)2 and 119.6% for Mg(OH)2 (Erlin and Jana 2003). These reactions are known as 

topochemical, which means that the reaction occurs on the surface of the oxide compound and 

then the hydroxide compounds form outward, thereby causing stress concentrations that can 

lead to microcracking (Erlin and Jana 2003). Hydration of LD-slag samples was mainly 
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attributed to unassimilated CaO and CaO solid solution, and partially to unassimilated MgO, 

dicalcium silicate, and dicalcium ferrite (Okamoto et al. 1981). The MgO in SFS can exist in a 

chemically combined state (such as in a mineral phase), a free state, or a solid solution state, 

and the MgO is reactive when it is in the free state or when the MgO content is high relative to 

the other phases in the solid solution, in particular if the ratio of MgO/(FeO+MnO) is greater than 

1.0 (Luo 1980). Weathered SFS with low free CaO (<1%) has been found to be non-expansive 

(Mathur et al. 1999), and similarly, rapidly-cooled steel slag with very low free CaO (0.15%) has 

been found to undergo minimal expansion (Kim et al. 2014). With sufficient free expansive oxide 

phases, the expansion of unbound SFS aggregates can be upwards of 10% (Emery 1982).  

Based on the theoretical versus actual measurements of density variation, Verhasselt 

and Choquet (1989) found that the expansion of an LD slag was due to more than just the 

hydration of fine particles (< 0.5 or 0.1 mm) of free CaO. For coarser particles (0 to 4 mm), the 

change in density can be approximated based on the hydration of free CaO. Therefore, the 

authors argued that, for finer particles, where the reactions are accelerated, reactions other than 

the hydration of free CaO are occurring, such as the hydrolysis of calcium silicates or iron 

oxides, which can then be carbonated. Though the authors did not conduct further analysis, 

they concluded that free CaO was not the only source of expansion in BOF slags. There is 

evidence of this for BOF slags of similar initial free CaO contents (<3.5%), but produce 

significantly different expansions, up to a factor of 2 to 3 or greater. The final recommendations 

by the authors were that BOF slag aggregates can be used as an unbound base or subbase 

material if: (1) the initial free CaO content is <4.5%, (2) the slag is weathered outside for at least 

one year, and (3) the volumetric stability of the source material is tested. However, the authors 

also state that BOF slags should not be used in rigid bound layers because of the potential for 

severe expansion.     

A study by Wang (2010) attempted to measure the expansive force of BOF slag 

aggregates. Confined BOF slag aggregates were submerged in water and a load cell measured 

the force daily. It was found that the three different BOF slag aggregates exhibited final 

expansive forces that corresponded to estimated surface tension stresses ranging from 0.6 to 

1.3 MPa (87 to 189 psi). Only the BOF slag source that produced the highest expansion force 

resulted in some slight concrete deterioration under autoclave conditions. While this study 

aimed to quantify the expansive capability of SFS slag, it is limited in that: (1) the test was 

stopped after less than four weeks, so any free MgO may not have fully hydrated and (2) the 

free CaO and free MgO contents were not reported, so it is unknown why the different BOF slag 

sources resulted in different expansive pressures.  

 

2.3 CONCRETE WITH SFS AGGREGATES (LABORATORY STUDIES) 
A number of laboratory studies have investigated the usage of SFS aggregates in 

concrete. The literature review is summarized in Table 4 (strength and modulus properties) and 

Table 5 (shrinkage, fracture, and durability properties). This literature review only summarizes 

the studies that incorporated BOF, EAF, LD, or otherwise labeled steel slag aggregates in 

concrete. Overall, SFS aggregates in concrete can increase the concrete strength and modulus 

relative to virgin aggregate concrete, although there is insufficient information to definitively 

conclude the effect on other concrete properties (i.e. shrinkage, durability, fracture). However, 
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from the studies that investigated potential expansion because of CaO and/or MgO hydration, it 

is evident that the expanded products may have a detrimental effect on the concrete properties.  

Abu-Eishah et al. (2012) tested the mechanical and durability properties of concrete 

made with EAF slag aggregate replacing about 70% of the coarse aggregate. No virgin 

aggregate concrete was tested for comparison in this study. Relative to conventional concrete, 

the fresh and hardened concrete unit weight was greater with the addition of slag aggregates. 

The authors found that the compressive strength of the concrete could be further increased with 

the use of Class F fly ash and silica fume. The ratio of split tensile strength to compressive 

strength was in the range of 2.3% to 4.4%, which is less than the typical ratio of 10% for 

conventional concrete. While rapid chloride penetration tests were conducted, it was concluded 

by the authors that the test was not valid because the steel in the aggregate could have affected 

the electric current used in the test procedure. The inclusion of fly ash and silica fume also 

reduced the water absorptivity of the concrete.  

 Adégoloyé et al. (2013) investigated the effects of EAF and stabilized argon oxygen 

decarburization (AOD) stainless steel slags as coarse aggregate replacements in concrete. 

Partial (50%) and full (100%) replacements of virgin coarse aggregate with the EAF and AOD 

slag aggregates increased the compressive strength and dynamic modulus relative to the 

control concrete. However, the concrete porosity and gas permeability were higher for concrete 

with stainless steel slags, although the permeability was still lower than the maximum 

recommended value for building construction. The concrete expansion was measured on 

prismatic samples stored in water, and it was found that concrete with EAF slag had similar 

expansions to the control, but the AOD slag concrete expanded more, which was likely due to a 

higher MgO content. The expansion amounts for all concretes were still below the maximum 

allowable limit.  

By replacing either the coarse or fine aggregate with 100% steel slag aggregate, 

Akinmusuru (1991) found that the compressive strength was greater than conventional crushed 

stone aggregate concrete. The water absorption was also less for the concrete with coarse or 

fine steel slag aggregates, and the concrete water absorption was reduced by a greater extent 

by using fine steel slag aggregates compared with coarse steel slag aggregates.  

Al-Negheimish et al. (1997) utilized EAF slag aggregate at 0 and 100% replacements of 

coarse aggregate in concrete. The concrete unit weight increased with the addition of the EAF 

slag aggregate. The compressive strength of concrete with EAF slag aggregate was similar to 

concrete with gravel aggregates, even under different curing conditions. The concrete flexural 

and split tensile strengths and modulus of elasticity increased with the use of EAF slag 

aggregates. Drying shrinkage strains appeared to be reduced with the use of EAF slag 

aggregates.    
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Table 4. Effect of SFS Aggregates on Concrete Strength Relative to Conventional Concrete 

Property 
Effect Relative 
to Virgin 
Concrete 

Reference 

Compressive 
Strength 

Increase 

Sersale et al. (1986a); Wang (1988); Akinmusuru (1991); 
Montgomery and Wang (1991); Wang (1992); Madej et al. 
(1996); Vázquezramonich and Barra (2001); De Schutter et 
al. (2002); Alizadeh et al. (2003); Beshr et al. (2003); 
Maslehuddin et al. (2003); Almusallam et al. (2004); 
Mohammed et al. (2009); Pellegrino and Gaddo (2009); 
Qasrawi et al. (2009)

1
; Coppola et al. (2010); Etxeberria et al. 

(2010)
3
; Papayianni and Anastasiou (2010a, 2011); Liu et al. 

(2011); Qasrawi (2012, 2014); Adégoloyé et al. 
(2013);Pellegrino and Faleschini (2013); Pellegrino et al. 
(2013); San-José et al. (2013); Anastasiou et al. (2014); 
Tarawneh et al. (2014) 

Decrease 
Kawamura et al. (1982); Manso et al. (2004); Netinger et al. 
(2011); Ameri et al. (2012); Mathew et al. (2013) 

Similar 
Al-Negheimish et al. (1997); Maslehuddin et al. (1999); 
Manso et al. (2006)

2
; Obratil et al. (2009); Tomasiello and 

Felitti (2010); González-Ortega et al. (2014) 

Split Tensile 
Strength 

Increase 

Montgomery and Wang (1991); Al-Negheimish et al. (1997); 
De Schutter et al. (2002); Ali (2003); Alizadeh et al. (2003)

3
; 

Beshr et al. (2003); Almusallam et al. (2004); Pellegrino and 
Gaddo (2009); Coppola et al. (2010); Papayianni and 
Anastasiou (2010a, 2011); Qasrawi (2012); Pellegrino and 
Faleschini (2013); Pellegrino et al. (2013); Anastasiou et al. 
(2014) 

Similar 
Alizadeh et al. (2003)

4
; Obratil et al. (2009); San-José et al. 

(2013) 

Decrease  
Maslehuddin et al. (2003); Etxeberria et al. (2010)

5
; Mathew 

et al. (2013) 

Flexural 
Strength 

Increase 

Wang (1988); Montgomery and Wang (1991); Al-Negheimish 
et al. (1997); De Schutter et al. (2002); Alizadeh et al. (2003); 
Mohammed et al. (2009); Qasrawi et al. (2009); Coppola et al. 
(2010); Papayianni and Anastasiou (2010a, 2011); Ameri et 
al. (2012); Anastasiou et al. (2014); Qasrawi (2014) 

Decrease 
Maslehuddin et al. (1999, 2003); Liu et al. (2011); Netinger et 
al. (2011); Mathew et al. (2013) 

Similar Obratil et al. (2009) 

Modulus of 
Elasticity 

Increase 

Montgomery and Wang (1991); Al-Negheimish et al. (1997); 
Alizadeh et al. (2003); Beshr et al. (2003); Almusallam et al. 
(2004); Pellegrino and Gaddo (2009); Coppola et al. (2010); 
Papayianni and Anastasiou (2011); Pellegrino and Faleschini 
(2013); Pellegrino et al. (2013); Anastasiou et al. (2014); 
González-Ortega et al. (2014); Qasrawi (2014) 

Similar Etxeberria et al. (2010)
5
; San-José et al. (2013) 

Decrease Netinger et al. (2011) 

Dynamic 
Modulus 

Increase Madej et al. (1996); Adégoloyé et al. (2013) 

1
With material passing #100 sieve removed;

 2
at later ages; 

3
high strength concrete; 

4
normal 

strength concrete; 
5
with a cement content of 350 kg/m

3
 and a water-to-cement ratio of 0.50 
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Table 5. Effect of SFS Aggregates on Concrete Shrinkage, Fracture, and Durability Properties 

Relative to Conventional Concrete 

Property 
Effect Relative to 
Virgin Concrete 

Reference 

Stress Intensity Factor Increase  Montgomery and Wang (1992) 

Total Fracture Energy Increase Papayianni and Anastasiou (2010a) 

Brittleness Index Decrease Montgomery and Wang (1992) 

Bond Strength Increase Montgomery and Wang (1991) 

Drying Shrinkage 

Increase Coppola et al. (2010) 

Similar Netinger et al. (2011) 

Decrease 
Madej et al. (1996); Al-Negheimish et al. (1997); Liu et al. 
(2011) 

Water Absorption 

Decrease 
Akinmusuru (1991); Maslehuddin et al. (1999, 2003); 
Mohammed et al. (2009) 

Increase Manso et al. (2004, 2006) 

No change Anastasiou et al. (2014) 

Sorptivity Variable Etxeberria et al. (2010) 

Freeze/Thaw Durability 

Acceptable Obratil et al. (2009); Papayianni and Anastasiou (2010a) 

Decrease in Strength Manso et al. (2006); Pellegrino and Gaddo (2009) 

Increase in Strength Pellegrino et al. (2013) 

Wetting/Drying Durability 

Decrease in Strength 
Manso et al. (2006); Pellegrino and Gaddo (2009); Pacheco 
et al. (2010) 

Decrease or Increase 
in Strength 

Pellegrino et al. (2013) 

Abrasion Resistance Improved 
Sersale et al. (1986a); Papayianni and Anastasiou (2003, 
2010a, 2011) 

High-Temperature 
Resistance 

Decrease in Strength Sersale et al. (1986a); Netinger et al. (2010, 2012) 

Water Penetration 

Increase Manso et al. (2004, 2006); Anastasiou et al. (2014) 

Similar Papayianni and Anastasiou (2010a) 

Decrease Pacheco et al. (2010); San-José et al. (2013) 

Sulfate Attack Resistance Similar De Schutter et al. (2002); Ali et al. (2011) 

Alkali-Aggregate 
Reactivity  

Low Reactivity De Schutter et al. (2002); Manso et al. (2006) 

Chloride Diffusion Increase Pacheco et al. (2010) 

Chloride Diffusion 
Coefficient 

Similar Ali (2003) 

Chloride Penetration 
Resistance 

Increase Anastasiou et al. (2014) 

Porosity 
Increase 

Manso et al. (2004, 2006); Adégoloyé et al. (2013); San-
José et al. (2013); Anastasiou et al. (2014) 

Similar Pacheco et al. (2010); Papayianni and Anastasiou (2010a) 

Gas Permeability Increase Adégoloyé et al. (2013) 

Volume of Permeable 
Pores 

Decrease Maslehuddin et al. (2003) 

Pulse Velocity 
Increase Maslehuddin et al. (2003) 

Similar González-Ortega et al. (2014) 

Time to Corrosion 
Initiation 

Increase Maslehuddin et al. (1999, 2003); Ali (2003) 

Time to Cracking 
(Corrosion) 

Increase Maslehuddin et al. (1999, 2003); Ali (2003) 

Corrosion Current Density Decrease Ali (2003) 

Corrosion Susceptibility 
(Concrete pH) 

No change Netinger et al. (2011) 
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Ali (2003) investigated the effect of aggregates on the corrosion potential of steel 

reinforcement in concrete and compared the results from concretes made with 100% limestone 

and 100% steel slag as coarse aggregate. The split tensile strength of concrete increased with 

the use of steel slag aggregates. Also, the time to initiation of corrosion increased, the time to 

initiation of concrete corrosion cracking increased, and the corrosion current density decreased 

when steel slag aggregates were used in the concrete. The chloride diffusion coefficient was not 

very different between the concretes with different coarse aggregates. After thermal cycling, the 

concrete with steel slag aggregates still had the highest split tensile strength, and the reduction 

in strength with increasing thermal cycles was greater for the concretes with limestone 

aggregates.  

Ali et al. (2011) examined the use of EAF slag aggregate as 0, 10, 50 and 100% 

replacements of coarse aggregate in concrete. After 28 days of curing, the concrete specimens 

were exposed to a sulfate solution for 20 weeks. There was minimal volumetric change for all 

concrete mixes, demonstrating that concrete with EAF slag aggregates is as resistant to sulfate 

attack as concrete with granite aggregate.  

Normal and high strength concrete with coarse EAF slag aggregate was investigated by 

Alizadeh et al. (2003), and in both concrete types the inclusion of EAF slag aggregates 

increased the compressive and flexural strengths and modulus of elasticity relative to the control 

concrete. The split tensile strength increased with the inclusion of the EAF slag aggregate for 

the high strength concrete, but there was no change for the normal strength concrete.  

Ameri et al. (2012) investigated different replacements (0, 25, 50, 75, and 100%) of 

virgin aggregate with BOF slag aggregate. The authors found that 25% BOF slag increased the 

compressive strength relative to the control (100% virgin aggregate) while the other 

replacement ratios decreased the strength. Not all replacement levels were tested for flexural 

strength, but in general, the inclusion of BOF slag aggregate increased the flexural strength of 

concrete.  

Anastasiou et al. (2014) tested mortar and concrete with combined coarse EAF slag 

aggregates, fine construction and demolition waste (CDW), and high calcium fly ash. With 100% 

coarse EAF aggregate, the compressive, split tensile, and flexural strengths and the modulus of 

elasticity increased relative to the control. When CDW fine aggregates were used, the addition 

of coarse EAF slag aggregates did not significantly improve the properties. The high calcium fly 

ash further improved the hardened properties of the concrete with 100% coarse EAF slag 

aggregates, but only at later ages (>1 year). The use of coarse EAF slag aggregates did not 

appear to increase the water absorption, but the concrete porosity was slightly increased; the 

use of CDW with and without EAF slag aggregates increased the porosity and water absorption. 

Under pressure, the water penetration increased when EAF slag and/or CDW aggregates were 

used. The chloride penetration resistance slightly improved with EAF slag aggregates and 

decreased with CDW.  

Bäverman and Aran Aran (1997) examined a concrete with 0 and 100% replacements of 

natural fine aggregates with EAF slag aggregate. The use of the EAF slag aggregate increased 

the concrete unit weight. The compressive strength was similar for both concretes, being 

classified as a medium-strength concrete, although the concrete with EAF slag aggregate was 

reported as being “more brittle.” A leaching test revealed that the leachates were similar 

between the two concretes except for the chromium content, although the chromium 
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concentration leached from the concrete with EAF slag aggregate was a minimum around a pH 

of 12.5.  

Beshr et al. (2003) compared concretes made with four different coarse aggregate 

types: three limestone (calcareous, dolomitic, and quartzitic) and one steel slag. Relative to the 

other limestone aggregates, the steel slag aggregate resulted in higher compressive and split 

tensile strengths and a higher modulus of elasticity. Additional work by the authors considered 

the effects of adding silica fume to the same concrete mixtures (Almusallam et al. 2004), which 

revealed that the compressive and split tensile strengths increased. At all silica fume dosages, 

the concrete with steel slag aggregate had higher compressive strengths than the limestone 

aggregate concretes. With 0 and 15% silica fume, the concrete with steel slag aggregate had 

higher split tensile strengths than the limestone aggregate concretes, while with 10% silica fume 

the concrete with steel slag aggregate had similar split tensile strengths to the quartzitic 

limestone aggregate concrete and higher strengths than the calcareous and dolomitic limestone 

aggregate concretes. With 0 and 15% silica fume, the concrete with steel slag aggregate had a 

higher elastic modulus than the limestone aggregate concretes, while with 10% silica fume, the 

concrete with steel slag aggregate had a lower elastic modulus than the quartzitic limestone 

aggregate concrete and a higher elastic modulus than the calcareous and dolomitic limestone 

aggregate concretes. 

Coppola et al. (2010) studied partial replacements (0, 10, 15, 20, and 25%) of the total 

(coarse, intermediate, and fine) aggregates in concrete with EAF slag aggregate. As the 

percentage of EAF slag aggregate increased, the slump loss rate increased, the modulus of 

elasticity increased, and the compressive, split tensile, and flexural strengths increased. 

Increasing contents of EAF slag aggregates drastically increased the drying shrinkage strain in 

the concrete with 25% EAF slag aggregate increasing the shrinkage strain by 30% at later ages.  

 De Schutter et al. (2002) investigated using LD-slag as partial and full replacements (0, 

20, 40, and 100%) of aggregate in concrete blocks for maritime structures. The mixes with 20% 

and 40% LD-slag used steam-weathered slag while the mix with 100% LD-slag had untreated 

slag. The concrete unit weight increased with increasing LD-slag contents, although the addition 

of the LD-slag reduced the concrete slump. The addition of the LD-slag was found to increase 

the compressive strength and slightly increase the flexural and split tensile strengths of the 

concrete. No damage was found in any of the concrete cube specimens after 14 freeze/thaw 

cycles. After 13 weeks in sodium sulfate solution, only the mix with 100% untreated LD-slag 

showed some swelling and cracking damage. A test for alkali-silica reaction (ASR) yielded some 

swelling in the mixes with treated LD-slag, which the authors concluded was not likely due to 

ASR but rather due to the expansion of unhydrated products in the LD-slag.  

Ducman and Mladenovič (2011) studied the use of fine EAF slag aggregate (0-4 mm 

size) as partial and full replacements of a cement mortar with bauxite aggregates (0-6 mm size) 

for refractory applications. It was found that EAF steel slag was not suitable for high-

temperature applications because of a phase transformation (wüstite to magnetite) around 700-

800°C which led to expansion, cracking, and reduced mechanical properties. However, the 

transformation is irreversible, so if the EAF slag aggregate is heated to 1000°C and then added 

to the concrete, then the concrete remains stable in high-temperature applications.   

 Among other industrial by-product materials, Etxeberria et al. (2010) investigated the use 

of 0, 25, 50, and 100% coarse EAF slag aggregates replacements of natural aggregates. With a 
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cement content of 300 kg/m3 and a water-to-cement ratio of 0.55, it was found that only 25% 

EAF slag aggregate increased the compressive and split tensile strengths and modulus of 

elasticity relative to concrete with natural aggregates. With a cement content of 350 kg/m3 and a 

water-to-cement ratio of 0.50, at all EAF slag aggregate contents, the compressive strength was 

higher, the split tensile strength was lower, and the modulus of elasticity was lower but similar to 

the control concrete. By submerging the concrete samples in water, the length change of the 

concrete with EAF slag aggregates was similar or lower than the control concrete. Only the 

concrete with 100% EAF slag aggregate had a lower sorptivity than the control concrete. After 

exposing the concrete to 800°C for 4 hours, the concrete with EAF slag aggregates had a 

greater residual strength than the control concrete. Testing the same concrete with 0, 20, and 

100% EAF slag aggregates, Pacheco et al. (2010) found that the concrete porosity was similar 

with and without EAF slag aggregates. Conducting a wetting/drying test, all concretes 

experienced a reduction in strength, although the reductions were less severe for the concretes 

with EAF slag aggregates. Concrete with EAF slag aggregates demonstrated better resistance 

against water penetration. In a chloride diffusion test, the surface concentration of chlorides and 

the unsteady apparent diffusion coefficient were higher for the concrete with EAF slag 

aggregates, and, in addition, the rate of chloride penetration was higher than the control for the 

mix with 100% EAF slag aggregate. It is possible that the chloride contents were higher in the 

concrete with EAF slag aggregate because of chlorides binding to the slag.  

 Fujii et al. (2007) examined a concrete that contained SFS as the aggregate and used 

combinations of cement, ground granulated blast furnace slag, and fly ash as the cementitious 

binder. The results indicated that the compressive strength can be similar to conventional 

concrete. The concretes produced typically failed before the freeze/thaw durability limit of 300 

cycles. The results indicated that SFS aggregates with lower absorption capacity was more 

freeze/thaw durable compared with SFS aggregates with higher absorption capacity, especially 

if an air-entraining admixture was used. The authors theorized that the SFS aggregates leached 

calcium hydroxide, which reacted with the air-entraining agent, causing large bubbles to form 

and lowering the freeze/thaw durability of the concrete. The authors recommended the use of fly 

ash to reduce the calcium hydroxide content.  

George and Sorrentino (1982) made mortars using a BOF slag aggregate created by 

adding an “aluminous slagging agent” to the converter during production, which reportedly 

reduced the free lime content. It was found that the steel slag aggregate increased the flexural 

and compressive strengths of the mortar relative to a siliceous aggregate mortar. The authors 

speculated that the improved flexural strength with steel slag aggregates was caused by 

mechanical and chemical influences. Electron micrographs showed that the fracture for 

siliceous aggregates occurred near the paste-aggregate interface, while for steel slag 

aggregates, the fracture occurred through the paste and the aggregate.  

González-Ortega et al. (2014) studied the mechanical and radiological properties of 

concrete with weathered non-expansive coarse and fine EAF slag aggregates. The concrete 

containing EAF slag aggregates could have similar compressive strengths to limestone 

aggregate concrete. The static modulus of elasticity was upwards of 10% greater for concrete 

with EAF slag aggregates. The ultrasonic pulse velocity of the concrete was similar for the virgin 

aggregate concrete and the concrete with EAF slag aggregates. The attenuation of gamma rays 

was 11% greater for concrete with EAF slag aggregates, relative to limestone aggregate 
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concrete, indicating that concrete with EAF slag aggregates may provide better radiation 

shielding.  

Kawamura et al. (1982) evaluated two BOF slag aggregate sources as full replacements 

of fine and/or coarse aggregates in concrete. Concretes were produced with BOF slag 

aggregates that had been weathered outside for 0, 1, and 3 months. The BOF slag aggregate 

properties changed with weathering. In general, as the amount of weathering increased, the 

slag specific gravity and unit weight decreased while the absorption capacity increased. The 

concrete slump increased when the weathered BOF slag aggregates were used. Overall, the 

compressive strength of the concrete at 28 days was reduced when BOF slag aggregates were 

used as fine aggregates, coarse aggregates, or both. The compressive strength further 

decreased when weathered slag aggregates were used. After concretes made with 3-month-

weathered slag aggregates were submerged in 20°C water for 17 weeks, the concrete with slag 

aggregates expanded more than the virgin aggregate concrete despite the lack of visual signs 

of cracks or pop-outs.  

Khan and Shinde (2013) examined 0, 20, 40, 60, 80 and 100% replacements of natural 

fine aggregate with steel slag fine aggregate in concrete. The results indicated that the 

compressive, split tensile, and flexural strengths increased and then decreased with increasing 

fine steel slag aggregate content. The results indicated that the 60% fine steel slag aggregate 

maximized the concrete strength.  

Liu et al. (2011) investigated the use of EAF slag aggregates as replacements of both 

fine and coarse aggregates in concrete. By replacing 100% coarse and fine aggregate with EAF 

slag aggregate, the compressive strength increased while the flexural strength slightly 

decreased relative to the control concrete. The drying shrinkage decreased with the use of EAF 

slag aggregates.  

 Lun et al. (2008) investigated various methods to reduce the free CaO content in BOF 

steel slag fine aggregate for use in concrete. The treatment methods were by steam for 8 and 

12 hours and by autoclaving for 3 hours, all of which reduced the free CaO content. By soaking 

mortar bars in hot water, the steam-treated steel slag aggregates delayed the onset of, but did 

not prevent, deleterious expansion while the autoclave-treated steel slag did not undergo 

deleterious expansion. Initial results, without deleterious expansion, showed that the treated 

slag aggregate mortars had higher compressive and flexural strengths than the control with 

untreated slag aggregate. After the mortar was hot water cured and the aggregates expanded, 

the compressive and flexural strengths decreased, although the strengths were relatively 

consistent for the autoclaved slag aggregate mortar. 

 Madej et al. (1996) examined two different slags from EAF iron alloy production: a high 

carbon ferro chromium (FeCrC) slag and a ferro silico manganese (FeSiMn) slag. In an 

autoclave unsoundness test, the steel alloy slag aggregates did not undergo significant 

expansion, around of 0.10%, compared with an LD-slag with a high free CaO content that 

expanded up to 13%. Compared with a dolomite concrete with a similar water-to-cement ratio, 

the concretes with the steel alloy slag exhibited greater magnitudes of unit weight, compressive 

strength, and dynamic modulus. In addition, the drying shrinkage was less for the concretes with 

steel alloy slag. An investigation of the cement-aggregate interface using scanning electron 

microscopy with the FeCrC slag aggregate revealed little calcium silicate hydrate (C-S-H), but 

large crystals of oriented calcium hydroxide were observed.  
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Manso et al. (2004) made mortar and concrete with EAF slag aggregates that had been 

weathered outside for 90 days in wetted stockpiles that were periodically turned. Mortar 

samples were created with blends (33, 50, and 67%) of EAF slag fine aggregate and limestone 

filler and compared with a control mortar with limestone sand. The mortar compressive 

strengths were similar to the control although the mix with 67% EAF slag aggregate was slightly 

lower than the control. Concrete was made with replacements up to 100% of the total (fine, 

intermediate, and coarse) aggregate with EAF slag aggregate. Relative to the limestone 

aggregate control mix, mixes with EAF slag aggregate resulted in higher water absorption, 

increased water penetration, higher porosity, and reduced compressive strength; these 

detrimental effects were reduced once limestone fine aggregate was used instead of EAF slag 

fine aggregate. The use of a limestone filler partly mitigated some of the negative effects that 

the slag aggregate had on the concrete properties. An accelerated aging test was performed by 

curing the concrete samples in warm water and then weathering the samples outdoors, but 

there did not appear to be a negative effect on compressive strength. A sulfate solution 

soundness test revealed that the mixes with slag aggregate and limestone filler had a greater 

reduction in compressive strength and greater expansion compared with the control mix, 

although the expansion was less than the allowable maximum limit. A leaching test on the 

concrete with steel slag aggregate and plain steel slag showed that the leachates were below 

the maximum allowable limits for sulfates, fluorides, and total chromium. A continuation of the 

study by Manso et al. (2006) revealed reductions in compressive strengths at early ages (7, 28 

days) relative to the control when replacing coarse and fine aggregate with EAF slag, although 

the compressive strengths were similar to the control at later ages (90 days, 1 year). The results 

also indicated that the water absorption, water penetration, and porosity increased with 

increasing steel slag aggregate content. Concrete samples were autoclaved and then 

weathered outdoors for 90 days, which demonstrated that there was a reduction in the 

compressive strength although the EAF slag aggregate concrete had less significant reductions 

in strength. An accelerated aging test was also conducted by curing samples in warm water and 

then weathering outdoors, and  this accelerated aging scheme did not have a negative impact 

on compressive strength. A test for alkali-aggregate reactivity revealed that the expansion was 

lower than the critical limit. After 25 freeze/thaw cycles, all mixes experienced reductions in 

compressive strength, but the reductions were more severe for the mixes with EAF slag 

aggregates. Additionally, after 30 wetting/drying cycles, all mixes experienced a reduction in 

compressive strength, but the mixes with EAF slag aggregate resulted in greater reductions in 

strength. Another leaching test was performed and, again, the leachates were below the 

maximum allowable limits for sulfates, fluorides, and total chromium. Additional research by the 

Manso et al. (2011) demonstrated that precast concrete can be made with both coarse and fine 

EAF slag aggregates in conjunction with ladle furnace slag (as a partial replacement of cement) 

and limestone filler (as a partial replacement of fine aggregate). Additional work showed that 

ladle furnace slag could be used in conjunction with EAF slag aggregates (Polanco et al. 2011), 

although at high contents of ladle furnace slag, the expansion caused by MgO hydration can be 

detrimental. 

  Maslehuddin et al. (1999) investigated the use of 0 and 100% replacements of coarse 

aggregate with steel slag aggregate at different coarse to total aggregate ratios. At the same 

coarse aggregate ratio, the compressive and flexural strengths were similar for the concretes 
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with and without steel slag aggregate, i.e., there was a 3.8% reduction in flexural strength with 

the steel slag aggregate. Concrete with steel slag aggregate was found to be less permeable 

based on the reduction in total water absorbed. The shrinkage of mortar samples with steel slag 

aggregate was lower than mortar with sand. Testing for steel corrosion susceptibility, the 

concrete with steel slag aggregate increased the time to corrosion initiation as well as the time 

to cracking. Additional work by the authors (Maslehuddin et al. 2003) replaced 100% of the 

coarse aggregate with EAF slag aggregate and compared it with limestone aggregate concrete. 

For the same coarse aggregate ratio, the compressive strength was higher, the flexural and split 

tensile strengths were slightly lower, the concrete absorption was lower, the volume of 

permeable pores was lower, and the pulse velocity was higher for the concrete with steel slag 

aggregates versus virgin aggregate concrete. Exposed to thermal cycles, the concrete strength, 

pulse velocity, and absorption decreased, but the compressive strength and pulse velocity were 

higher and the absorption was lower for the slag aggregate versus the limestone aggregate 

concrete. The drying shrinkage was lower for slag aggregate mortar, and after exposing mortar 

to a moist environment for 110 days, the slag aggregate mortar had experienced expansion 

while the limestone mortar did not. Testing for steel reinforcement corrosion, the steel slag 

aggregate concrete had a longer time to initiation of corrosion as well as a longer time to 

cracking.   

 Mathew et al. (2013) replaced crushed granite coarse aggregate with 0, 20, 40, 60, 80, 

and 100% steel slag aggregate. The concrete slump increased with increasing steel slag 

aggregate content. As the slag aggregate content increased, the compressive, split tensile, and 

flexural strengths decreased. However, the target flexural strength for concrete pavements was 

achieved by all steel slag aggregate concretes.  

 Matsunaga et al. (2004) investigated a material called “steel slag hydrated matrix,” which 

was a cementitious material for marine structures made with steel slag aggregate (maximum 

sizes of 20 or 40 mm) mixed with water, ground granulated blast furnace slag, fly ash, and 

calcium hydroxide. Compared with conventional concrete, the steel slag hydrated matrix had a 

lower modulus of elasticity, better abrasion resistance, and could have similar compressive, 

tensile, and flexural strengths. This “steel slag hydrated matrix” has been also researched as a 

material for seaweed growth to deter sea desertification (Nakagawa et al. 2010).  

Mohammed et al. (2009) studied concrete specimens with 0, 25, 50, and 60% 

replacements of natural aggregates with steel slag aggregates. The compressive and flexural 

strengths increased with increasing slag aggregate content. The water absorption of the 

concrete decreased with increasing slag aggregate content.  

Montgomery and Wang (1991) examined the use of instant-chilled steel slag, also 

known as shallow box chilled steel slag, at 0, 20, 40, 60, 80, and 100% (by volume) 

replacements of coarse limestone aggregate. An increase in the split tensile strength of the 

concrete with steel slag aggregate content was found, but the interfacial bond strength (using a 

split tension test) was greater between a steel slag surface and mortar versus a limestone 

surface and mortar. With increasing steel slag aggregate content, the compressive and flexural 

strengths and the elastic modulus also increased. Microhardness test results suggested that the 

steel slag aggregate may have a harder interfacial transition zone. Additional work by the 

authors (Montgomery and Wang 1992) using notched compact compression fracture specimens 

revealed that the stress intensity factor is greater by about 10% and the brittleness factor is 
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lower for concrete with 100% coarse steel slag aggregates relative to concrete with limestone 

aggregates.  

 Moon et al. (2002) examined both EAF and converter steel slag aggregates as well as 

different processing methods to mitigate the deleterious expansion, including air aging for one 

month, hot water aging at 80°C for one and three days, and steam aging at 100°C and 1 atm for 

three days. An immersed expansion test of the slag aggregate revealed that all aging methods 

were successful at reducing the expansion, although the hot water (three days) and steam 

aging methods were most effective, particularly with the converter steel slag. Dehydration tests 

revealed that the hot water and the steam aging methods were the most successful at 

converting free CaO to Ca(OH)2. The aging methods affected the compressive strength of 

concrete somewhat, and the results suggested that the degree of expansion (amount of free 

lime) affected the compressive strength.  

 Moosberg-Bustnes (2004) created mortars with AOD steel slag fine aggregate as filler 

material (<45 μm) by partially replacing (10, 20, and 30%) cement. The steel slag mortar 

resulted in higher compressive strengths than the reference at all replacement levels and 

resulted in higher flexural strengths for only the 10 and 20% replacement levels. The author 

speculated that the increase in strength was possibly due to the filler effect and/or due to the 

hydration of the silicate phases in the steel slag. An additional part of the study used EAF and 

AOD steel slags as filler that had been wet-ground in order to increase the activity (i.e. 

reactivity) of the slag. The slags were then added as partial (0, 20, and 40%) replacements of 

cement. The results indicated that the compressive strength was reduced when using either of 

the steel slags as filler material, although at later ages the strength was higher for the mixes 

with 20% steel slag (either EAF or AOD) relative to the mix with 20% quartz filler. The shrinkage 

was not significantly affected by the presence of the steel slag filler material.  

Netinger et al. (2010) investigated the effects of temperature on concretes with dolomite 

fine aggregates and either steel slag or dolomite coarse aggregates. The cured concretes were 

treated at temperatures of 100°, 200°, 400°, 600°, and 800°C. The high-temperature treatments 

reduced the compressive and flexural strengths and the elastic moduli of all concretes. 

Concrete with steel slag aggregates had similar residual compressive strength to dolomite 

concrete at temperature treatments 100°, 200°, 400°, and 600°C, and at 800°C, the dolomite 

concrete had better residual compressive strength. Similar behavior was noted for the flexural 

strength, although one of the steel slag aggregate concrete mixes had significantly reduced 

strength after the 600°C, and none of the mixes had any residual flexural strength after the 

800°C treatment. The elastic modulus behavior was similar for all concretes up to temperatures 

of 400°C; the steel slag aggregate concrete mixtures had lower relative elastic moduli to the 

dolomite concrete after high-temperature treatments (600° and 800°C). The weight loss was 

similar for all concretes except for the dolomite concrete at 800°C, which experienced greater 

mass loss than the steel slag aggregate concretes. Measurement of the ultrasonic pulse velocity 

through the concrete specimens indicated that the microcracking was more severe in the 

concretes with steel slag aggregates, especially after higher temperature treatments (600° and 

800°C). Additional concrete mixtures were tested by Netinger et al. (2012), which confirmed the 

previous findings. The significant damage to the concrete at elevated temperatures was due to 

the expansive phase transition that steel slag undergoes after 550°C. 
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An additional study by Netinger et al. (2011) tested two EAF slag aggregates sources for 

potential full replacement of coarse aggregate in concrete. Fresh concrete with slag aggregate 

had a higher unit weight, higher air content, and the same slump relative to virgin aggregate 

(dolomite) concrete. The addition of slag aggregates reduced the compressive and flexural 

strengths and the elastic modulus compared with the virgin aggregate concrete. The inclusion of 

slag aggregates did not affect the pH of the concrete pore solution, indicating that it would not 

affect the corrosion susceptibility of steel reinforcement. The drying shrinkage of the concrete 

was similar between virgin and steel slag aggregates.  

 Researchers at Cleveland State University (Bosela et al. 2008; Obratil et al. 2008) 

investigated three different BOF aggregates at varying replacements of coarse and fine 

aggregates up to 100% levels in concrete. For concrete fresh properties, the steel slag 

aggregate reduced workability, increased unit weight, and had variable effects on the air 

content. The compressive strength was similar for all concrete mixtures, with SFS aggregate 

contents ranging from 10% to 100%. The effect of steel slag on the concrete split tensile 

strength was variable. Although the authors did not compare the hardened properties with a 

control mix with virgin natural aggregates, the hardened properties of concrete with slag 

aggregates were suitable for paving concrete. Additional work by Obratil et al. (2009) studied a 

SFS aggregate source as partial and full replacements of virgin aggregate for paving concrete. 

The SFS aggregates reduced workability and increased unit weight. The air content appeared to 

be suitably controlled by the amount of air-entraining admixture dosed. The compressive 

strength was reportedly not adversely affected by the slag aggregate and therefore it met the 

required strength level at 28 days. The split tensile and flexural strengths were additionally not 

greatly affected by the steel slag aggregate. Concrete length change measurements of concrete 

in lime water were inconclusive regarding the expansive potential of the steel slag aggregate. In 

addition, the freeze/thaw durability of concretes with steel slag aggregates was acceptable after 

300 cycles.  

Ozeki (1997) reported that studies were carried out in Japan on the use of EAF slag 

aggregates in concrete. No additional details were provided and it was simply stated that the 

concrete strength and durability properties were similar between EAF and natural aggregates.  

Ozkul (1996) created concrete mixtures with 100% EAF coarse aggregate and with 

natural sand or ladle furnace slag as the fine aggregate. The compressive and flexural strengths 

were similar for the two concretes, although the mix with natural sand had slightly higher 

compressive strengths, and, at later ages (at 28 days and 180 days), the concrete with ladle 

furnace slag fine aggregates had higher flexural strengths. The abrasion resistance of the 

concrete was improved with the slag fine aggregates. After 20 wetting/drying cycles, both 

concretes had about a 3% reduction in dynamic modulus. The volume expansion of the 

concretes after being stored in water for 180 days was similar to virgin aggregate concrete.  

Papayianni and Anastasiou (2003) studied the effect of using steel slag aggregates as 

100% replacements of coarse and/or fine aggregates in concrete, in combination with 30-60% 

replacements of cement with high calcium fly ash and 0-30% replacements of cement with 

ground granulated steel slag. The authors investigated the strength (compression, split tension, 

and flexure), modulus (static and dynamic), abrasion resistance, wet/dry durability, and outdoor 

exposure durability properties. However, because the w/cm ratio was not held constant for all 

concrete mixtures, it is difficult to definitively conclude the effects of the steel slag, although the 
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concrete abrasion resistance improved with the inclusion of steel slag aggregates. The heavy 

metals present in the steel slag aggregate were not as susceptible to leaching once they were 

incorporated into the concrete.  

Papayianni and Anastasiou (2005) utilized steel slag aggregates as coarse aggregates 

in a heavy-weight concrete application for radiation shielding. While the authors did not compare 

the findings with those of conventional concrete with virgin (natural) aggregates, they tested the 

effect of steel slag coarse aggregates on the concrete strength (compression, split tension, and 

flexure), modulus (static and dynamic), and fracture (Hillerborg’s total fracture energy and 

impact fracture) properties. In testing for radiation shielding properties compared with 

conventional concrete, steel slag aggregate concretes had similar gamma ray attenuation in the 

energy region of ~1 MeV and better gamma ray attenuation in the energy region of 0.1 MeV, but 

had an increased secondary gamma ray production. 

Papayianni and Anastasiou (2010a) examined the feasibility of using 100% coarse and 

50% fine EAF slag aggregate in concrete with partial replacements of cement with either 30% 

ladle furnace slag or 50% high calcium fly ash. The concrete unit weight increased with the use 

of EAF slag aggregate. For concrete mixes with cement and with and without high calcium fly 

ash, the mixes with coarse EAF slag aggregate and with coarse and fine EAF slag aggregate 

had higher compressive, split tensile, and flexural strengths compared with the control mix with 

limestone aggregates. The mix with coarse EAF slag aggregate and ladle furnace slag had 

similar strengths to the control mix. For concrete with plain cement, the mixes with coarse EAF 

slag aggregate and with coarse and fine EAF slag aggregate resulted in up to 27% higher total 

fracture energies compared with virgin aggregate concrete. Abrasion resistance improved with 

EAF slag aggregates, and the freeze/thaw durability was acceptable for all mixes except for 

those with the high calcium fly ash. The depth of water penetration under pressure was good for 

all mixes, indicating good impermeability, as was additionally evidenced by the low porosity of 

the concretes.  

Papayianni and Anastasiou (2011) studied concrete with full replacements of coarse 

aggregate and partial replacements of fine aggregate with EAF slag aggregate in addition to 

60% replacement of cement with high calcium fly ash. The EAF slag aggregates increased the 

unit weight of the concrete. Replacing only the coarse aggregate with EAF slag aggregates 

resulted in higher compression, split tension, and flexural strengths versus the virgin aggregate 

control mixes, both with and without fly ash. With coarse and fine EAF slag aggregates, the 

concrete resulted in slightly higher compression, split tension, and flexural strengths than the 

virgin aggregate control mix with fly ash. The elastic modulus was higher for the concrete with 

EAF slag aggregates compared with the virgin mixes with and without fly ash. The concrete with 

coarse EAF slag aggregate and fly ash showed improved abrasion resistance compared with 

the control concrete with limestone aggregate and no fly ash. A leaching test revealed that the 

leachate from the concrete with coarse EAF slag aggregate and fly ash was minimal and was 

categorized as “inactive waste.”  

Pellegrino and Gaddo (2009) investigated EAF slag as a potential aggregate in concrete. 

A leaching test found that the potential toxic chemicals from the slag were lower than the 

allowable limits. For the concrete mixture design, an ideal grading curve was developed and all 

aggregates ≥2 mm in size consisted of EAF slag aggregates while all aggregates <2 mm in size 

were natural aggregates. The concrete with EAF slag aggregates had higher unit weights, 
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compressive and split tensile strengths, and elastic moduli compared with the natural aggregate 

concrete. In an attempt to accelerate the hydration of free CaO and free MgO in the slag, 

concrete cylinders were placed in a 70°C water bath for 32 days, after which the compressive 

strength of the concrete with EAF slag aggregates decreased by 5.6% while the concrete with 

natural aggregates experienced a 9.1% increase in strength. An additional set of concrete 

cylinders were placed in a 70°C water bath for 32 days and then weathered outdoors for 90 

days, after which the compressive strength of the concrete with EAF slag aggregates decreased 

by 2.4% while the concrete with natural aggregates experienced an 8.3% increase in strength. 

In another aging test, the cylinders were subjected to 25 freeze/thaw cycles, after which the 

compressive strength of the concrete with EAF slag aggregates decreased by 7.3% while the 

concrete with natural aggregates experienced an 11.5% increase in strength. In a final aging 

test, the cylinders were subjected to 30 wetting/drying cycles, after which the compressive 

strength of the concrete with EAF slag aggregates decreased by 26.5% while the concrete with 

natural aggregates experienced a 5.7% decrease in strength.  

Building on the previous work, Pellegrino et al. (2013) examined 0, 50, and 100% 

replacements of coarse and fine aggregate with EAF slag aggregate in concrete. The addition of 

EAF slag aggregates could have higher unit weights, compressive and split tensile strengths, 

and elastic moduli relative to natural aggregate concrete, however, it is difficult to draw definitive 

conclusions because the water-to-cement ratio was not constant for all of the mixes. Additional 

aging tests were carried out by submerging the concrete cylinders in a 70°C water bath for 32 

days and then weathering them outdoors for 90 days. Before and after the 90 days of outdoor 

weathering, all concretes experienced an increase in compressive strength, with the greatest 

increase typically occurring for the natural aggregate concrete. After 25 days of freeze/thaw 

cycles, all concrete mixtures experienced an increase in compressive strength. Additionally, 

after 30 wetting/drying cycles, all concretes experienced a decrease in compressive strength, 

with some of the mixes with EAF slag aggregates experiencing a greater decrease while others 

experienced a lesser decrease in compressive strength relative to natural aggregate concrete. 

There is some microstructural evidence to support that air-entrained concrete with 100% coarse 

and fine EAF slag aggregates may develop fewer and smaller air bubbles. Chemical and 

mineralogical studies on the concrete before and after durability testing did not reveal a 

significant difference.  

Qasrawi et al. (2009) investigated using 0, 15, 30, 50, and 100% fine aggregate 

replacements with low calcium (0.4% CaO) high iron (97% Fe2O3) steel slag aggregate. As the 

fine slag aggregate content increased, the concrete workability decreased and the unit weight 

increased. Particularly at later ages, the concrete compressive strength for mixtures with 15, 30, 

and 50% fine steel slag aggregate was higher than the control (0% slag aggregate) while the 

mix with 100% steel slag aggregate was lower than the control. The flexural strength was higher 

than the control for concretes with fine steel slag aggregates at all replacement levels, and the 

strength increased with increasing slag aggregate content up to 50%. However, when the steel 

slag aggregate was sieved to remove all material passing the #100 sieve (0.15 mm), the 

compressive strength continued to increase as the fine steel slag aggregate content increased 

from 0% to 100%. The researchers concluded that a high amount of fines may adversely affect 

the concrete results because more cement is needed to effectively coat the particles.  
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Qasrawi (2012) investigated concrete with a SFS coarse aggregate that had an iron 

content of 37%. The higher iron content of this SFS aggregate reduced the concrete workability, 

but the compressive and split tensile strengths were found to increase with increasing SFS 

aggregate contents. In addition, the author did not find any indication of concrete staining from 

corrosion of the iron in the SFS aggregate after aging from 1 to 10 months.  

Qasrawi (2014) tested concrete with 0, 25, 50, 75, and 100% by volume replacements of 

the virgin coarse aggregate with coarse SFS aggregate. Tests were then additionally conducted 

to determine the optimum replacement of virgin coarse aggregate with a combination of SFS 

and recycled concrete aggregate (RCA). The workability decreased while the air content 

increased with increasing SFS aggregate contents. The concrete compressive strength 

increased by as much as 20% when SFS aggregates were utilized. The use of RCA reduced 

the compressive strength, but with a blend of 67% SFS and 33% RCA, the compressive 

strength was relatively unaffected, even up to 100% replacement of virgin coarse aggregate. 

Similar behavior was noted in the concrete flexural strength. The use of SFS aggregates 

increased the modulus of elasticity upwards of 17%, but a combination of 67% SFS and 33% 

RCA reduced the modulus by <10%.  

Rainová et al. (2012) studied fiber-reinforced concrete with either BOF or blast furnace 

slag aggregates and compared the results with those of other concretes with recycled 

aggregates from the literature. The results indicated that the concrete with BOF slag aggregate 

attained higher compressive and split tensile strengths compared with the concrete with blast 

furnace slag aggregates, although both mixtures had strengths less than those cited in the 

literature with EAF slag aggregates.  

San-José et al. (2013) tested concrete with two different sources of EAF slag 

aggregates. The total aggregate consisted of mainly EAF slag coarse and fine aggregates (92-

93% by weight) with some limestone filler added. The water-to-cement ratio was not constant 

between all mixtures, which may have skewed the interpretation of the results. Relative to a 

control concrete with limestone aggregates, the concretes with EAF slag aggregates resulted in 

similar split tensile strengths and moduli of elasticity but higher compressive strengths. The 

concrete porosity increased slightly for the concretes with EAF slag aggregates relative to the 

control. The depth of water penetration was below the allowable limit for all mixtures, although 

the concretes with EAF slag aggregates exhibited slightly lower depths of penetration than the 

control.   

A number of different EAF slag samples were characterized by Sánchez Fransesch and 

Soria Tonda (2010) for use in cement mortars at contents of 0, 20, 30, 40, 50, and 100%. The 

overall findings suggested that SFS aggregate contents of 30 and 40% were the most promising 

for mortar performance. In addition, not all types of fine aggregate were suitable for use in 

conjunction with SFS aggregates in mortar, and variable results were found for a given SFS 

aggregate source once different cement sources were tested. Based on the SFS test results, 

the authors determined that the material exhibits potential for use in embankments, as fillers for 

drainage materials, as aggregates for HMA, as aggregates for mortar, as aggregates for 

concrete, as gravel, and as a raw material in cement clinker manufacture.  

Sersale et al. (1986a) used LD slag aggregate as 0 and 100% replacements of coarse 

aggregate in concrete. Concrete with LD slag aggregate had higher compressive strengths than 

similar concretes produced with limestone or basalt coarse aggregates, particularly at later ages 
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(7 and 28 days). The abrasion resistance of the concrete also improved with the use of LD-slag 

aggregates. Treating the concrete at 200°C for 24 hours reduced the compressive strength of 

the concrete with steel slag aggregates by more than 50% relative to the limestone and basalt 

concretes.  

Tarawneh et al. (2014) investigated by weight replacements of fine, intermediate, and 

coarse limestone in concrete with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100% SFS aggregates. 

The general trend indicated an increase in compressive strength with increasing SFS content.  

Tomasiello and Felitti (2010) studied self-compacting concrete (SCC) with EAF slag 

aggregate as a partial replacement of the coarse aggregate. Fly ash and limestone filler were 

also examined as partial replacements of cement. Suitable workability was obtained for the SCC 

with EAF slag aggregates. The concretes with either fly ash or limestone filler resulted in similar 

compressive strengths for the mixes with and without EAF slag aggregate.  

 Vázquezramonich and Barra (2001) created various concrete mixtures with different 

EAF slag aggregate sources, replacing the total aggregate content by 0, 20, 35, and 100%. The 

concretes with EAF slag aggregates had a higher compressive strength than the mix with 

limestone aggregates, and the mixes with 100% EAF slag coarse and fine aggregates resulted 

in the highest strengths. Concrete specimens were then subjected to various aging conditions: 

curing room with ≥95% relative humidity at 20°C for 2 months, accelerated aging with 90% 

relative humidity at 70°C for two months, and autoclave accelerated aging at 0.2 MPa and 

132°C for 4, 8, and 24 hours. Because the EAF slag sources were different, the dimensional 

changes for the various concretes was different as well; some concretes experienced similar 

dimensional changes to the reference concrete with limestone aggregates while other concretes 

experienced dimensional changes more than 2.5 times the reference concrete. Distresses 

(cracks, pop-outs) began to form in the concretes with EAF slag aggregates after 11 months for 

the specimens cured at ≥95% relative humidity and 20°C, after 2 weeks for the specimens 

cured at 90% relative humidity and 70°C, and after 4 hours, though more significantly after 8 

and 24 hours, for the autoclaved specimens.  

Wang (1988) utilized steel slag aggregates as partial and full replacements of fine 

aggregate in mortar and concrete samples. Mortar samples yielded higher compressive and 

flexural strengths with 100% steel slag aggregates compared with virgin sand. Additionally, 

concrete samples with partial and full replacements of fine aggregate with steel slag resulted in 

higher compressive and flexural strengths versus the control. The abrasion resistance of the 

concrete was reduced with increasing steel slag fine aggregate contents, although it is not clear 

if the test was performed on mortar or concrete samples. There is some evidence to support 

that the cement-aggregate bond is improved with the addition of steel slag fine aggregate, 

based on microhardness results and a finding that there is a greater amount of hydration 

products within 50 μm of the interface between steel slag aggregate and cement versus 

limestone aggregate and cement. Using scanning electron microscopy, it was found that the 

interface within 20 μm of the paste-aggregate interface contained finer calcium hydroxide 

crystals and was denser for the steel slag aggregate compared with the limestone aggregate. 

The author postulated that the improved characteristics of the paste-aggregate interfacial zone 

were because of the reaction of the cement hydration products with ions from the mineral 

phases in the steel slag aggregate.  
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Wang (1992) examined 100% coarse aggregate replacements with BOF slag aggregate. 

Microhardness tests revealed that the interfacial transition zone, about 25 μm away from the 

paste-aggregate interface, was harder for concrete with BOF aggregates compared with basalt 

aggregates, possibly because of the reaction of the BOF slag with cement. The compressive 

strength was higher for mixes with BOF coarse aggregate compared with basalt aggregate. The 

expansion of the samples soaked in water was the same for both BOF and basalt aggregates. 

Concrete samples were also subjected to a 100-minute autoclave test, which revealed that the 

samples remained volumetrically stable after the test.  

Reinforced concrete structures have also been investigated incorporating EAF slag 

aggregates. Kim et al. (2012) found that the flexural performance of concrete with EAF slag 

aggregates was similar to concrete with natural aggregates. Additional work has also been 

conducted on spirally reinforced confined concrete columns with EAF slag aggregates (Kim et 

al. 2013). Work by Pellegrino and Faleschini (2013) showed similar behavior with increases in 

compressive and split tensile strength and elastic modulus when EAF slag aggregate was used, 

and in reinforced concrete beams, concrete with EAF slag aggregate yielded higher ultimate 

flexural and shear capacities versus concrete with natural aggregates. 

 

2.4 CONCRETE WITH SFS AGGREGATES (FIELD STUDIES) 

A number of concrete projects have been completed utilizing SFS aggregates. The 

performance results have not all been satisfactory, with a number of projects demonstrating 

significant failures and others performing satisfactorily. There have not been many documented 

concrete pavement applications with SFS aggregates, although it has been shown that, in 

Austria, through careful material evaluation, certain SFS aggregate sources can be used in 

concrete for road construction and for concrete floors (Geiseler 1996).  

One report examined states that produce steel slag or are near other states that produce 

steel slag (Ohio, Indiana, West Virginia, Pennsylvania, Michigan, and Illinois), and in general 

found that these state departments of transportation do not permit the use of steel slag 

aggregates in concrete (Fronek et al. 2012). Primarily, the research on the use of steel slag 

aggregates in concrete has been done outside of the United States, namely in Spain, Germany, 

Canada, Italy, India, and Saudi Arabia (Fronek et al. 2012).  

In the United States, early failures of projects with SFS aggregates essentially halted its 

usage in concrete pavements. In the early 1980s, a concrete pavement section of I-75 near 

Tampa, Florida, was constructed with expansive steel slag aggregates in a 6-inch econocrete 

base layer topped with an unbonded 9-inch concrete surface layer. Within 6 months, pavement 

distresses consisting of longitudinal cracks of 100 feet long and crack openings up to 2 inches 

wide were visually noted (Armaghani et al. 1988). In the late 1970s or early 1980s, a 16-inch 

concrete pavement runway was constructed on a 6-inch econocrete base with EAF slag 

aggregates at the Tampa International Airport in Florida; the expansion of the EAF slag in the 

econocrete resulted in shear failures in the asphalt shoulders and the doweled centerline joint 

opened several inches (Bosela et al. 2012; W. Charles Greer Jr., personal communication, April 

2014). 

In Gregg County, Texas, a concrete pavement with SFS aggregates may have been 

constructed on IH-20 in the 1960s (TxDOT 1999), but no additional information was located on 

the performance of this pavement.  
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Pennsylvania conducted a field experiment with OHF slag in a cement-treated base and 

subbase on Route 82 in Chester County. The slag was not sufficiently weathered and resulted 

in significant surface displacements. The horizontal and vertical surface displacements were on 

the order of four to six inches (Miller and Collins 1976).  

Internationally, steel slag aggregates have been successfully used in construction 

projects in Spain, Greece, and Belgium. Between 2008 and 2010, the Labein-Tecnalia Kubik 

Building in Madrid, Spain, was constructed with EAF slag aggregates. The basement walls and 

floor slab utilized 100% coarse and fine EAF slag aggregate while up to 75% of the total 

aggregate was EAF slag aggregate for the foundation walls and slab (Arribas et al. 2010; 

Bosela et al. 2012) without distresses reported (Bosela et al. 2012). A base course test section 

has also been constructed in Spain which contained EAF and ladle slag aggregates stabilized 

with cement (Vázquez et al. 2010).  

 In Greece, a concrete pavement test section with EAF slag aggregates and high calcium 

fly ash was surveyed after 10 years of service (trafficked by trucks at a ready-mix concrete 

plant). Cores demonstrated that the compressive and split tensile strengths of the concrete were 

still superior to conventional concrete. Microscopic analysis of samples showed that the 

concrete had suitable air content (6-8%) and demonstrated strong paste-aggregate bonding 

(Papayianni and Anastasiou 2010b). There has also been field application of self-consolidating 

concrete with EAF slag fines as filler material (Lykoudis and Liapis 2010). 

 A low traffic rural road was constructed in Belgium with roller-compacted concrete that 

had stainless steel EAF slag aggregates as 85% of the total aggregate (De Bock and Van den 

Bergh 2004). Field cores taken 90 days after placement showed compressive strengths ranging 

from 24 to 53 MPa from four locations with a fifth location revealing compressive strengths as 

low as 7 MPa. Another site in Belgium utilized stainless steel EAF slag aggregates in a cement-

treated road base. The base contained 78% steel slag aggregate by total weight of the dry 

materials. The 28-day unconfined compressive strength of the field-molded specimens ranged 

from 4.3 to 9.5 MPa. The base was constructed in three layers, and a nuclear density gauge 

confirmed that the compacted base reached 94% to 99% of the reference density. No additional 

details were provided on the performance of these field sections.  

In the United Kingdom, Dunster (2002) reported that BOF slag aggregates had been 

used for coarse and fine aggregates in armour stones as sea defense barriers. After 18 months 

of wetting and drying cycles, visual inspections revealed no evidence of cracking or spalling.  

An investigation into the mechanism of pop-outs in a concrete wall in South Korea one 

year after construction revealed that the cause was due to fine EAF slag aggregates. The 

hydration of free CaO and free MgO caused stress concentrations which led to the pop-out 

formation. Finite element analysis revealed that EAF particle sizes ≤5 mm can cause a pop-out 

up to 23 mm deep (Lee and Lee 2009). 

 
2.4.1 SFS in Pavement Support Layers 

Steel slag has been used in roadway applications other than in concrete. In Australia, 

steel slag aggregates are used in asphalt concrete or as a base or subbase material and can be 

used up to 100% in certain applications (CCAA 2008, 2013). Australian pavement test sections 

with BOF aggregates as a base material did not show any signs of deleterious expansion after 

two years (Heaton 1989). Australians have also used SFS aggregates as a road surfacing 
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material and as a compacted, unbound road shoulder material (Jones 1982). Heaton et al. 

(1996) and Heaton (1993,1996) discuss Australian test sections that used SFS aggregates and 

granulated blast furnace slag as a binder; the hypothesis was that the free CaO in the SFS 

aggregates would activate the granulated blast furnace slag. Heaton et al. (1996) and Heaton 

(1996) also argue that in a weathered SFS aggregate, the available free CaO has hydrated to 

form Ca(OH)2, thus reducing the expansive potential of the SFS as well as providing the 

Ca(OH)2 that may activate the hydration in a mix with fly ash and/or granulated blast furnace 

slag. A number of test sections in the United Kingdom showed promising performance with both 

weathered and virgin LD slag base materials (Thomas 1983). Test sections were built in 

Germany in the early 1990s using LD slag as base materials (Motz and Geiseler 2000). In 

Germany, steel slag aggregates can be used in bases and subbases as well as in asphalt 

surface layers. Certain regulations are in place in Germany for volume stability of the steel slag 

aggregates, and provided that the regulations are met, the aggregates have remained stable 

throughout the life of the pavement. The German experience has shown leaching is not an issue 

either.  

A case study reported by Crawford and Burn (1969, 1971) involved steel slag 

aggregates in a backfill that ultimately expanded and caused building damage. A building 

located in Sault Ste. Marie, Ontario, Canada, was constructed in 1961-1962 in which a steel 

slag aggregate was used as backfill material before the concrete floor slabs were poured. 

Cracking in the building was originally noted in early 1963, and an excavation in 1965 revealed 

that the floor had been raised 1/2 inch, which then exceeded 1 inch in 1967. The vertical 

movement by the end of 1967 was indicative of a 9% expansion of the steel slag. The 

expansion continued and was reported to indicate an 18% expansion of the steel slag at the end 

of 1970.  

In Brazil, an LD slag fill had to be removed to prevent the collapse of a building (da 

Silveira et al. 2005). Used as a backfill, SFS has been reported to cause issues with heaving 

building floor slabs in a number of cases (Bailey and Reitz 1970; Gnaedinger and Gnaedinger 

1970; Gray and Salver 1970; Ritchie 1970; Spanovich and Fewell 1970; Gnaedinger 1987). In 

one instance, the concrete floor slab was reported to have heaved by 11 inches (Gnaedinger 

1987). In one occurrence, the vertical heave of the concrete slab was 8.3% relative to the 

thickness of the SFS backfill (Gray and Salver 1970). Failures have also been reported in 

parking lots, where the surface course was replaced as a result of the expansion of the OHF 

slag base (Spanovich and Fewell 1970; Gnaedinger 1987) with surface heaves reported to be 

up to 15 inches.  

Glass (2003) presented a case in South Africa where a mixture of steel slag and 

ferricrete was used as a backfill material at a steel mill. Over time, the expansion of the steel 

slag aggregate caused movements of the floors and walls of various buildings at the site. The 

floor movements were on the order of 100-250 mm. The steel slag expansion was estimated to 

be around 5%.  
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2.5 SFS FRAP AGGREGATES  

To date, no studies have investigated the use of SFS FRAP aggregates in either 

concrete or asphalt mixtures. However, the expansive characteristics of reclaimed asphalt 

pavement (RAP) materials with SFS aggregates have been studied (Senior et al. 1994; Deniz et 

al. 2010; Dayioglu et al. 2014).  

Deniz et al. (2010) studied the expansive characteristics of various recycled aggregates– 

such as RAP, SFS RAP, virgin SFS, virgin blast furnace slag, and virgin dolomite aggregates– 

in a highly alkaline (pH = 12) solution at 70°C to ascertain the applicability of the materials for 

unbound base or subbase applications. The expansion was monitored up to 60 days. The 

authors found that the total expansion of SFS FRAP aggregates was less than that of virgin 

SFS aggregates (Figure 2). The degree of expansion was 6.2% and 5.8% for virgin nonporous 

steel slag, 4.1% for a virgin porous steel slag, 1.7% for a RAP that contained about 92% steel 

slag aggregates, 1.5% and 1.1% for steel slag aggregate RAP, 0.9% for a stone mastic asphalt 

(SMA) RAP, 0.2% for a surface binder course RAP that contained about 60% steel slag 

aggregates, and 0.3% for a virgin steel slag aggregate, and nearly 0% for air-cooled blast 

furnace slag and virgin dolomite. While the authors did not conduct a chemical analysis, it is 

possible that the lower degree of expansion for the SFS FRAP was because of already hydrated 

and expanded free CaO and free MgO. Additionally, the virgin steel slag aggregates that did not 

expand significantly likely did not have high contents of free CaO and free MgO.  

 

 
Figure 2. Expansion results for various aggregates, including virgin slags, SFS RAP, RAP, and 

natural aggregates. Source: Deniz et al. (2010). 
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Dayioglu et al. (2014) attempted to reduce the swelling potential (tested by ASTM 

D4792, conducted in water at 70°C) of SFS aggregates by coating the aggregates with asphalt 

binder (PG 64-22). As expected, the greatest expansion occurred with the uncoated SFS 

aggregate. With a coating of 7% by weight of asphalt, the SFS aggregate did not expand 

(Figure 3). Samples with lower contents of asphalt experienced swelling, but with a coating of 

4% by weight of asphalt, the SFS aggregate expanded 70% less than the uncoated SFS 

aggregate sample. The swelling of the SFS aggregate was also reduced by mixing water 

treatment residual (WTR) with the aggregates.  

 

 
Figure 3. ASTM D4792 expansion results for virgin steel slag (SS) and with 4% and 7% bitumen 

contents (BC). Additional tests were conducted by adding water treatment residual (WTR). 

Source: Dayioglu et al. (2014). 

 

Senior et al. (1994) examined the expansion potential of a 10-year-old SFS RAP by 

ASTM D4792. A blend of SFS RAP with granular material resulted in a low expansion (<1%) 

after 7 days while, at the same time, the virgin SFS aggregates (BOF and EAF) had high 

expansion (3-6%). Specifically, the expansion of the blended materials after 7 days was as 

follows: 15/85 SFS RAP/granular 0.44%, 30/70 SFS RAP/granular 0.61%, 40/60 SFS 

RAP/granular 0.61%, and 50/50 SFS RAP/granular 0.65%. An additional test with 100% SFS 

RAP resulted in very low expansion (0.03%), which was attributed to a delayed reaction. A RAP 

with trap rock underwent zero expansion as did a blend of virgin sand and gravel. At later ages, 

the expansion was similar between the samples with 100% SFS RAP and 30% SFS RAP, as 

can be seen in Figure 4. The virgin SFS aggregates underwent significant expansion, even at 

later ages. These findings led to the recommendations that a blend with a maximum of 30% 

SFS RAP is allowed for certain granular base and subbase applications in Ontario and that 

100% SFS RAP is allowed for use as material for unpaved shoulders.  
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Figure 4. ASTM D4792 expansion results for virgin SFS and SFS RAP aggregates. 

Source: Senior et al. (1994). 

 

There are very few specifications or recommendations that mention the allowable use of 

SFS RAP or SFS FRAP. The Indiana Department of Transportation (INDOT) allows the use of 

SFS RAP in asphalt pavements, provided that the existing specifications for RAP are still met 

(INDOT 2014). The Ministry of Transportation of Ontario (MTO) allows the use of some SFS 

RAP materials for unpaved gravel shoulders, but SFS RAP aggregates are not allowed in HMA 

pavements (MTO 2013). 

 

2.5.1 Performance and Expansion of Hot-Mix Asphalt with SFS Aggregates  

In the United Kingdom, asphalt-based construction has utilized steel slag starting in the 

1920s (Thomas 1983). In Ontario, Canada, steel slag aggregates were allowed in HMA mixes 

until they were banned in 1991. However, a review of various projects in Ontario revealed that 

HMA with SFS aggregates can perform better than HMA with natural aggregates (Piché 2003).  

Coomarasamy and Walzak (1995) examined field cores of asphalt pavements with SFS 

aggregates that were exhibiting “good” and “poor” performance. The “good” pavement revealed 

a uniform SFS aggregate-asphalt interface with good coverage and adhesion. The cracked and 

“poor” performing pavement showed white calcium-rich deposits, mainly calcium carbonate 

(CaCO3), that were accumulating at the SFS aggregate-asphalt interface. When exposed to 

humidity, core cross-sections of the “good” and “poor” performing pavements showed some 

reactivity of the exposed SFS aggregate. This indicates that, in the field, the free CaO and MgO 

may or may not hydrate if the SFS aggregate is covered with asphalt although the potential for 

expansion still exists.  
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Kandhal and Hoffman (1997) found that HMA samples with SFS fine aggregates 

submerged in 150°F water or samples subjected to freeze/thaw cycles did not expand to an 

amount that correlated to the expansion potential of the SFS fine aggregates, even though one 

of the SFS sources produced very high expansions. This suggests that SFS aggregates coated 

with asphalt are impermeable to water ingress, so expansion cannot occur. HMA samples with 

higher asphalt contents experienced less expansion because of freeze/thaw. These results 

suggest that the SFS FRAP with higher asphalt contents may experience less volume 

expansion or may not expand at all if the asphalt coating prevents moisture ingress.   

A scanning electron microscopy investigation revealed that the rough texture of BOF 

slag aggregate allowed for a strong bond strength and adhesion with asphalt (Shen et al. 2009). 

This may be the reason why other studies found that the HMA with SFS did not expand 

significantly and performed well under freeze/thaw cycling.  

When immersed in water, an SMA mixture with steel slag aggregates expanded by less 

than 1% over 7 days (Wu et al. 2007). However, it is questionable whether or not all of the 

available free CaO and free MgO would have expanded in 7 days, so it is likely that much 

longer immersion times would have yielded more reliable results.  

 

2.6 TESTING OF SFS AGGREGATES  

Given that the composition and performance of SFS aggregates differ from conventional 

virgin aggregates, additional tests may be appropriate. Farrand and Emery (1995) suggested 

that performance testing of SFS is appropriate, particularly petrographic examination, expansion 

measurements after a 1-hour autoclaving, and expansion measurements after a 7-day water 

immersion (after ASTM D4792). However, chemical composition is also of critical importance, 

particularly in the form of free lime content determination.  

 

2.6.1 Free CaO Content Determination  

The total free CaO of the SFS is of critical importance, as the hydration of the CaO to 

form Ca(OH)2 is the initial expansive reaction of the aggregate. Heaton et al. (1996) argued that 

the expansion of SFS aggregates is affected by the morphology and distribution of the free CaO 

in the SFS particle, so the estimated total free CaO content is not the only indicator of the 

expansion potential. A number of studies have investigated methods to measure free CaO 

content, and other studies have attempted to refine the measurement to provide a more 

accurate estimation. The most prevalent methods involve a chemical extraction technique.     

The European Standard EN 1744-1:2009+A1 (2013) lists a number of testing methods 

for the free CaO content of SFS aggregates, including complexometry (complexometric 

titration), conductometry, and acidimetry. The SFS aggregate is ground and then free CaO is 

extracted by the sample using ethylene glycol. The calcium ion content can then be determined 

through complexometric titration or conductance measurements with the concentration of the 

calcium ions assumed to be only from the free CaO. Alternatively, in the acidimetry method, the 

free CaO can be extracted with ethyl acetoacetate and titrated with hydrochloric acid.  

 Ministry of Transportation of Ontario (MTO 1996) also specifies a test method for the 

free CaO content of SFS aggregates through complexometric titration. In this method, the 

sample is mixed with ethylene glycol and methyl alcohol and heated to dissolve the free CaO. 
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After filtering, the filtrate is titrated with hydrochloric acid after a bromothymol blue indicator is 

added.  

 A number of rapid test methods by complexometric titration have been developed to 

determine the free CaO content of cement and clinker, which were summarized in ASTM STP 

985 (Gebhardt 1988). The four described methods involved dissolving the free CaO in hot 

ethylene glycol, which was at temperatures of 230°C, 80-100°C, 80-90°C, or 110°C, depending 

on the method. Three of the methods then specified using a phenolphthalein indicator and 

titration with hydrochloric acid while the other method specified a chrome blue-black indicator 

and titration with ethylenediaminetetraacetate (EDTA).  

  Thermogravimetric analysis (TGA) has also been used to refine the estimated total free 

CaO content of SFS aggregates (Kneller et al. 1994). The free CaO content was determined 

using ethylene glycol, phenolphthalein indicator, and titration with hydrochloric acid. Assuming 

that the CaO in the SFS aggregate can be hydrated to form calcium hydroxide or carbonated to 

form calcium carbonate, TGA was used to determine these contents knowing the decomposition 

temperatures of both calcium hydroxide and calcium carbonate. The total initial free CaO was 

assumed to be the sum of the free CaO (determined from complexometric titration) and the CaO 

contents from calcium hydroxide and calcium carbonate (determined from TGA).  

 Belhadj et al. (2012) extracted the calcium ions with glucose and then titrated with 

hydrochloric acid. The authors then used TGA and differential thermal analysis to determine the 

calcium hydroxide and calcium carbonate amounts in the sample in order to accurately 

determine (i.e. refine) the free CaO content. Similarly, Lun et al. (2008) and Gumieri et al. 

(2004) used an ethylene glycol method to determine the free CaO and calcium hydroxide 

content of the SFS and then used TGA to determine the calcium hydroxide content, whereas 

Papayianni and Anastasiou (2011) used the “sugar test” from ASTM C25 and TGA-DTA to fully 

quantify the free CaO content. Okamoto et al. (1981) also used TGA-DTA to estimate the 

contents of Ca(OH)2, Mg(OH)2, and CaCO3.  

 Other studies have specified free CaO determination: extraction by ethylene glycol and 

methanol with titration (Coomarasamy and Walzak 1995), an ethylene glycol method (Thomas 

1983; Motz and Geiseler 2000; Faraone et al. 2009), extraction by warm ethylene glycol with 

titration by hydrochloric acid with phenolphthalein indicator (Gupta et al. 1994), extraction by a 

sugar solution with titration by sulfuric acid with a phenolphthalein indicator (Waligora et al. 

2010), the EN 1744-1 acidimetry method (Mahieux et al. 2009, 2014), the EN 1744-1 standard 

(Manso et al. 2006), the EN 1744-1 complexometric method (Netinger et al. 2011), the Spanish 

standard UNE 80-216-91 (Vázquezramonich and Barra 2001), an ethylene glycol method by the 

Brazilian standard NBR 7227 (Gumieri et al. 2004), chemical analysis and microscopy methods 

(Wachsmuth et al. 1981), a tribromophenol-glycerol extraction (Okamoto et al. 1981), and 

extraction with heated glycerol and titration with benzoic acid with phenolphthalein indicator 

(Wang 1992). A number of other studies reported a free CaO content, but did not describe the 

method in which the value(s) was determined.  

A number of methods have been developed and used to determine the free CaO content 

of SFS, the most prominent of which appears to be ethylene glycol extraction with 

complexometric titration. One complication with the ethylene glycol extraction is that it also 

extracts the calcium ions from other phases, such as calcium hydroxide (MacPherson and 

Forbrich 1937). A number of researchers have therefore used thermal analysis in conjunction 
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with complexometric titration techniques to more accurately quantify and refine the free CaO 

content of SFS.  

 

2.6.1.1 Free MgO Content Determination 

 No test method has yet been proposed to accurately determine the free MgO content of 

SFS aggregates. The European Standard EN 1744-1:2009+A1 (2013)  states: “The total MgO 

content is used as a measure of free MgO, in the absence, at present of a reliable method of 

determining the content of free MgO.” Some researchers, however, have attempted to study the 

free MgO content by other methods. Rojas and de Rojas (2004) used a leaching method to 

estimate the free MgO content of EAF slags.  

 

2.6.2 Mineralogical and Chemical Composition  

The simplest and most common method for determining the mineralogical composition 

of a crystalline sample is by x-ray diffraction (XRD), in particular powder XRD. The European 

Standard EN 1744-1:2009+A1 (2013) provides some methodology for distinguishing CaO from 

Ca(OH)2 in powdered SFS samples. All crystalline materials have a periodic spacing of atoms, 

the electrons of which scatter x-rays along certain crystallographic “planes” and the particular 

angles of scattering is more or less specific to a given crystalline compound (Kvick 2010). 

Therefore, XRD can be used to identify the mineralogical composition of SFS aggregates, as 

was exampled previously in Table 2. Quantitative XRD is possible, although accuracy levels of 

about 2-3% (by weight) are common, using internal/external standards, matrix flushing, the 

relative intensity ratio method, or the Rietveld method (Artioli 2010).  

The chemical composition of SFS aggregates has been determined through numerous 

techniques, mainly x-ray fluorescence (XRF) and energy dispersive x-ray spectroscopy (EDX) 

(Gupta et al. 1994; Coomarasamy and Walzak 1995; Gumieri et al. 2004; Lun et al. 2008; 

Etxeberria et al. 2010; Iacobescu et al. 2011; Yildirim and Prezzi 2011; Belhadj et al. 2012; 

Qasrawi 2012; Mahieux et al. 2014; Pellegrino et al. 2013; Pellegrino and Faleschini 2013; San-

José et al. (2013); Vlcek et al. 2013; Kim et al. 2014), but other studies have also used other 

methods, such as inductively coupled plasma atomic emission spectroscopy (Luxán et al. 2000; 

Rojas and de Rojas 2004; Xue et al. 2006; Faraone et al. 2009; Shen et al. 2009; Suer et al. 

2009; Legret et al. 2010; Waligora et al. 2010), using an electron microprobe analyzer 

(Coomarasamy and Walzak 1995), and atomic absorption spectroscopy (Sersale et al. 1986b). 

While a number of other studies report the chemical composition of the tested SFS, description 

of the testing method for composition was not discussed.  

The concept of XRF is that as photons are incident on a given atom, an electron from an 

inner orbital shell can be ejected, and in order for the atom to become stable again, an outer 

orbital electron is transferred to the vacancy in the inner orbital. Because there is an energy 

difference between the two shells, energy must be released, which is in the form of a photon, 

and this photon energy level, known as a characteristic x-ray, is specific to a given atom and 

shell transfer (Kramar 1999). This method can be used quantitatively because the peak intensity 

of a given characteristic energy is related to the concentration of that element. One type of XRF 

is known as energy dispersive x-ray spectroscopy (EDX), which refers to the method in which 

the energy dispersion and intensity is detected. An EDX system can commonly be found on 
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scanning electron microscopes (SEM), where characteristic x-rays are emitted by a sample as a 

result of the incident photon beam of high-energy electrons.  

In atomic emission spectroscopy (AES), the elements in a given sample are excited by a 

plasma source, such as inductively coupled plasma (ICP). The excited atoms or ions emit light, 

which can then be detected to produce an emission spectrum. The wavelength of the emitted 

light is characteristic to a given element (Bonchin et al. 2010).  

An electron probe analyzer works similarly to the previously discussed concepts. In this 

method, a focused beam of electrons is used to locally probe the surface of a sample to excite 

the atoms and obtain characteristic x-ray data. With this technique, regions as small as a few 

micrometers (or less) can be studied (Lifshin 2001).  

 With atomic absorption spectroscopy (AAS), a sample is atomized and a specific 

wavelength of light is introduced. Atoms will absorb the light in an amount proportional to the 

concentration of those atoms in the sample (Hill and Fisher 2010). However, AAS is only rapid 

when a few elements need to be determined, so it is perhaps not the best option for studying 

SFS.   

 

2.6.3 Expansion Testing  

Given the expansive nature of SFS, a number of test methods have been developed to 

further quantify the expansion potential. Because the expansion of SFS can be upwards of 10% 

(Emery 1982), it is very important to characterize the expansion of SFS as well as SFS FRAP.  

European Standard EN 1744-1:2009+A1 (2013) provides a test method for the 

expansion of steel slag aggregates. In this method, the expansion of a compacted SFS sample 

subjected to 100°C steam is measured for either 24 or 168 hours, depending on the MgO 

content.  

Pennsylvania Test Method (PTM) 130, which has since been redeveloped into ASTM 

D4792, specifies a test for the volumetric expansion of steel slag aggregates by submerging a 

compacted sample in water at 160°F for one week. Kandhal and Hoffman (1997) tested 10 steel 

slag aggregate sources for expansion by PTM 130 and found that sources that had been 

weathered outdoors for at least 6 months had negligible expansion (0.0-0.3%) while raw 

sources that had not been weathered had high expansions (1.1-2.8%). The results also 

indicated that coarser aggregates expand more than finer (passing #4 sieve) aggregates. Wang 

(1992) also tested compacted SFS samples in water at 165°F for upwards of 30 days but found 

that the expansion does not have a unique correlation with the SFS particle size. Wang et al. 

(2010) derived a theoretical expansion of SFS aggregates based on the specific gravity and free 

CaO content of the SFS, which was found to correlate well with the large expansion within the 

first 1-2 weeks of testing by ASTM D4792. A similar test method was proposed by Emery 

(1974), where a compacted sample was submerged in water at 180°F until the sample stopped 

swelling. The results indicated that typically one week was sufficient for the testing interval, 

because the expansion in 180°F water after 7 days was twice as much as the long-term 

expansion in 68°F water after 475 days (Emery 1977). However, gradation was found to have a 

significant impact on the expansion behavior (Emery 1974, 1977), so, for comparative testing, it 

was recommended that the gradation be controlled, although the gradation used for the 

aggregate application should also be tested (Emery 1974).  
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 Cylindrical mortar specimens with OHF slag aggregates were measured for expansion 

by Crawford and Burn (1969). The results indicated that at 100°C and 100% relative humidity, 

the mortar with OHF linearly expanded rapidly to 3 to 5% elongation and then stopped after 

about 2 months. In contrast, mortar specimens with OHF slag aggregates cured at 15°C and 

90% relative humidity continued expanding after 5 months at rates upwards of 3.5% per year.  

 Subjecting a sample to pressure and temperature, known as autoclaving, has also been 

used to characterize the expansion potential of SFS. Wang (1992) autoclaved loose aggregates 

at 357 kPa and 137°C for 50 minutes to check for unsoundness (i.e. disintegration, cracking). 

The Ohio Department of Transportation Supplement 1071 (ODOT 2008) lists that an autoclave 

disruption test is optional for SFS quality control requirements. Qian et al. (2002) also used an 

autoclave treatment at 2 and 5 MPa to observe the changes in mineralogy of finely powdered 

SFS and to measure the linear expansion of bars made with SFS and oil well cement. An 

autoclave test of mortar with SFS aggregate was conducted by Vázquezramonich and Barra 

(2001), but the authors concluded that the dimension of the mortar bar limited the maximum 

aggregate size too much to cause significant expansion. Mortar bars containing OHF slag were 

autoclaved (215°C and 300 psi for 3 hours) in a study by Crawford and Burn (1969), who found 

that some samples expanded linearly by around 10% while other specimens disintegrated.  

Okamoto et al. (1981) autoclaved LD slag particles at different pressures and times to 

determine the degree of hydration, amount of disintegration, and percent volume expansion. 

The degree of hydration of the free CaO increased with increasing autoclaving times, increasing 

pressures, and decreasing particle size. The degree of disintegration varied with particle size, 

but there was no discernible trend. The reacted compounds of MgO and CaO, namely Ca(OH)2, 

Mg(OH)2, and CaCO3, were all found to increase in increasing autoclaving pressures and times. 

The authors found that measuring the degree of hydration, amount of disintegration, or percent 

volume expansion were all useful in quantifying the expansion potential of LD slag, although the 

percent volume expansion measurement was the most sensitive. The findings also suggested 

that the hydration of MgO was slower than CaO. In one LD slag source, the CaO appeared to 

fully hydrate to Ca(OH)2 after 24 hours under 43 psi and the MgO appeared to fully hydrate to 

Mg(OH)2 after 24 hours under 426 psi. A regression analysis of 150 tests showed that the 

degree of hydration of the sample, based on the dry sample weight before and after autoclaving, 

was proportional to the pressure, treatment time, and free CaO content and inversely 

proportional to the particle size.  

Autoclaving has also been performed on concrete samples (Vázquezramonich and 

Barra 2001), and it was found that some concretes with EAF slag aggregates expanded by 

more than double that of the reference control concrete while other EAF slag aggregate sources 

produced similar expansions to the reference. Wang (1992) autoclaved saw-cut discs of 

concrete with BOF aggregate for 100 minutes and found no distresses or disruptions. Kim et al. 

(2014) autoclaved mortar prisms and found that the mixture with rapidly cooled steel slag 

aggregate underwent less length change (i.e. expansion) than the mixture with natural sand.  

Disintegration tests have also been used to characterize the expansion potential of SFS. 

The Indiana Test Method (ITM) 219 (ITM 2008) determines a content of deleterious material in 

SFS by heating a sample in an autoclave at 295 psi for 3 hours, and the deleterious content is 

defined as the ratio of the weight passing the #4 sieve after autoclaving to the weight retained 

on the #4 sieve before autoclaving. Heaton et al. (1996) described tests where the SFS particles 
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are placed in trays submerged in room-temperature water to observe the disintegration over 

time and found that the particle degradation is complete after 3 to 4 weeks, particularly for 

smaller particle sizes.  

 
2.6.4 Permeability Testing  

The volume stability of SFS has been found to be a function of the free CaO content and 

the porosity (Wachsmuth et al. 1981). Mercury porosimetry has been used to test the porosity of 

BOF slag aggregates (Okamoto et al. 1981; Wachsmuth et al. 1981; Xue et al. 2006), which 

were found to be more porous than limestone and basalt (Xue et al. 2006). A study of a blend of 

BOF and ladle furnace (LF) slags by nitrogen absorption-desorption revealed that there was an 

absence of microporosity in the slags, but that macropores were present, which were further 

investigated by mercury intrusion porosimetry (Navarro et al. 2010). The findings by Okamoto et 

al. (1981) suggest that the open pore volume of LD slag aggregates is related to the degree of 

hydration of free CaO. The porosity of RCA, which contained different aggregate types including 

blast furnace slag and limestone, has also been investigated using a helium pycnometer and an 

envelope density analyzer as well as image analysis (Deshpande and Hiller 2012).  

The pore volume of aggregates can be thought of as two components: (1) the pores that 

are accessible from the surface and (2) the pores that are isolated from the surface by the 

surrounding solid (Winslow 1994). The aggregate properties that relate to porosity, such as 

water absorption capacity, are related to those pores that are accessible from the surface and 

are not a function of the isolated pores. The permeability of a porous medium is a function of the 

porosity and the pore volume of the medium, as related by the Kozeny equation.  

 

2.7 CONCRETE WITH RAP/FRAP 

A number of studies have investigated the properties and performance of concrete with 

RAP/FRAP as a partial replacement of virgin aggregate. In these studies, however, the base 

aggregate has been an inert or unreactive aggregate, such as limestone or river gravel. No 

study has reported the use of SFS FRAP in concrete.  

Brand et al. (2012) recently summarized the findings from the studies of RAP/FRAP in 

concrete. The general trends of using concrete with RAP/FRAP are shown in Table 6. Overall, 

the literature findings suggest that the presence of RAP/FRAP in concrete will reduce the 

strength and stiffness of the concrete, although the durability and fracture properties may not be 

greatly affected.  

Concrete pavements with RAP or FRAP have been constructed in the field. In France, 

roller-compacted concretes (RCC) with RAP have been tested, which have demonstrated 

favorable performance with accelerated pavement test sections (Bilodeau et al. 2011, 2012; 

Nguyen et al. 2012). Additional studies have shown that RCC with RAP can have suitable 

fracture properties (Sachet et al. 2011; Ferrebee et al. 2014). Two-lift concrete pavements have 

also been constructed with RAP in the bottom lift in Kansas (Wojakowski 1998) and Illinois 

(Gillen et al. 2012; Bentsen et al. 2013). Other two-lift test sections have contained a blend of 

both RAP and RCA in the bottom lift, which have been constructed in Iowa (Bergren and Britson 

1977) and Austria (Sommer 1994). 
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Table 6. Effect of RAP/FRAP Aggregates on Concrete Properties Relative to Conventional 

Concrete (Updated from Brand et al. 2012) 
Concrete 
Property 

Effect on 
Property  

References 

Compressive 
strength 

Decrease 

Patankar and Williams 1970; Kolias 1996a; Delwar et al. 1997; Li et al. 1998; 
Sommer and Bohrn 1998; Dumitru et al. 1999; Hassan et al. 2000; Mathias et 
al. 2004; B. Huang et al. 2005, 2006; Katsakou and Kolias 2007; Hossiney et 
al. 2008, 2010; Al-Oraimi et al. 2009; Okafor 2010; Bilodeau et al. 2011; Bly 

and Weiss 2012; Berry et al. 2013; Brand and Roesler 2014; Brand et al. 2014; 
Erdem and Blankson 2014; Ibrahim et al. 2014; Su et al. 2014 

Split tensile 
strength 

Decrease 

Patankar and Williams 1970; Kolias 1996a; Sommer and Bohrn 1998; Mathias 
et al. 2004; Katsakou and Kolias 2007; Hossiney et al. 2008, 2010; B. Huang et 

al. 2005, 2006; Bilodeau et al. 2011; Brand and Roesler 2014; Brand et al. 
2014; Ibrahim et al. 2014; Su et al. 2014 

Flexural 
strength 

Decrease 

Patankar and Williams 1970; Sommer 1994; Kolias 1996a; Li et al. 1998; 
Sommer and Bohrn 1998; Dumitru et al. 1999; Hassan et al. 2000; Katsakou 

and Kolias 2007; Hossiney et al. 2008, 2010; 
Al-Oraimi et al. 2009; Okafor 2010; Bly and Weiss 2012; Berry et al. 2013;  

Brand and Roesler 2014; Brand et al. 2014; Erdem and Blankson 2014 

Direct tensile 
strength 

Decrease Patankar and Williams 1970; Katsakou and Kolias 2007 

Indirect 
tensile 

strength 
Decrease Su et al. 2014 

Modulus of 
elasticity 

Decrease 

Patankar and Williams 1970; Kolias 1996a, 1996b; Delwar et al. 1997; Sommer 
and Bohrn 1998; Dumitru et al. 1999; Mathias et al. 2004; B. Huang et al. 2006; 
Katsakou and Kolias 2007; Hossiney et al. 2008, 2010; Al-Oraimi et al. 2009; 
Bilodeau et al. 2011; Berry et al. 2013; Brand and Roesler 2014; Brand et al. 

2014; Erdem and Blankson 2014; Su et al. 2014 

Complex 
stiffness 
modulus 

Decrease Kolias 1996b; Bilodeau et al. 2011; Brand and Roesler 2014 

Resilient 
modulus 

Decrease Li et al. 1998 

Free 
shrinkage 

Increase Dumitru et al. 1999 

Decrease Hossiney et al. 2008 

Variable* Hossiney et al. 2010; Ibrahim et al. 2014 

No Effect Sommer 1994; Brand and Roesler 2014 

Creep strains Increase Kolias 1996a 

Coefficient of 
thermal 

expansion 
Variable* Hossiney et al. 2008, 2010 

Toughness Increase B. Huang et al. 2005, 2006; Su et al. 2014 

Fatigue 
properties 

Reduce Mathias et al. 2004 

Improve Li et al. 1998 

Fracture 
properties 

Similar Brand and Roesler 2014; Brand et al. 2014 

Porosity Increase Hassan et al. 2000 

Oxygen 
permeability 

Increase Hassan et al. 2000 

Surface 
absorption 

No Effect Al-Oraimi et al. 2009 

Frost 
resistance 

Decrease Sommer 1994; Sommer and Bohrn 1998 

Freeze/Thaw 
durability 

Suitable Brand and Roesler 2014 

Rapid 
chloride 

penetrability 
Similar  Brand and Roesler 2014 

Poisson Ratio Variable* Su et al. 2014 

*Variable = no clear trend 
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CHAPTER 3 AGGREGATE PROPERTIES OF SFS AND SFS FRAP  
 

In this study, three SFS FRAP and three virgin SFS aggregate sources were evaluated 

for comparison of the properties and chemical and mineralogical composition. Only one of the 

SFS FRAP sources was then evaluated for its effect on numerous concrete properties, but all 

SFS FRAP sources were tested for strength. Two of the virgin SFS sources were also tested for 

their effect on the concrete properties.    

Details of the three SFS FRAP sources can be found in Table 7. All three of the SFS 

FRAP aggregates were sourced from asphalt concrete pavements that had total aggregate 

contents roughly consisting of one-third SFS aggregate, one-third dolomitic coarse aggregate, 

and one-third crushed stone fine aggregate. The SFS aggregates in these pavements were 

sourced from plants in northwest Indiana, and all three sources were likely BOF slag. The 

original performance grade (PG) of the asphalt for all three mixes was PG 76-22.  

 

Table 7. SFS FRAP Sources and Testing Regimen 

 SFS FRAP 1 SFS FRAP 2 SFS FRAP 3 

SFS FRAP 
Production Source 

Curran Contracting 
(DeKalb, IL) 

Geneva 
Construction 

Central Blacktop 

Year of Placement 2001 1997 2001 

Year of Milling 2012 2008* 2012 

SFS Aggregate 
Source  

Multiserv (East 
Chicago, Indiana) 

Heckett-LTV 
(northwest 
Indiana) 

Heritage Slag/ 
Beemsterboer Slag 

(Gary, Indiana) 

Design Asphalt 
Content 

5.6% 5.4% 5.4% 

SFS Content in 
Original HMA Mix 

33% 32-33% 35% 

*Aggregate was stockpiled after milling 

 

A total of three virgin SFS sources were evaluated. The sources of the virgin SFS 

aggregates are shown in Table 8. One of the sources is from a ladle metallurgy furnace (LMF) 

process, which is a modified EAF process. It was requested from Edw. C. Levy (Virgin SFS 2 

and 3) that one source be of high expansion potential and the other low expansion.  

 

Table 8. Virgin SFS Sources and Testing Regimen 

 Virgin SFS 1 Virgin SFS 2 Virgin SFS 3 

Virgin SFS 
Source 

Beemsterboer Slag 
(Gary, IN) 

Edw. C. Levy, 
Butler Mill Service 

(Butler, IN) 

Edw. C. Levy, 
Charleston Mill 

Service (Huger, SC) 

SFS Type BOF EAF EAF/LMF 

Product 
Specification 

IDOT CM 13, CM 14 QA 11 Pea Gravel 
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3.1 AGGREGATE PHYSICAL PROPERTIES 

The coarse aggregate physical properties that were tested for each of the three SFS 

FRAP and three virgin SFS sources and the corresponding standard are shown in Table 9. 

Three replicates of each test were performed per source, except for the asphalt content and 

characterization tests, in which only one or two replicates were performed.  

 

Table 9. Coarse Aggregate Properties Tested 

Test Standard 

Gradation ASTM C136 (2006) 

Unit Weight (Rodding Method) ASTM C29 (2009) 

Specific Gravity and Absorption ASTM C127 (2007) 

Asphalt Content and 
Characterization 

AASHTO T164 (2011); AASHTO T313 (2010); 
AASHTO T315 (2010); ASTM D5404 (2011); 

ASTM D6847 (2002) 

 
3.1.1 SFS FRAP Physical Properties 

The results for the aggregate properties are shown in Table 10 (SFS FRAP 1), Table 11 

(SFS FRAP 2), and Table 12 (SFS FRAP 3). Table 13 compares the SFS FRAP properties with 

previous FRAP studies with Figure 5 comparing the various FRAP sources gradations. SFS 

FRAP has slightly higher specific gravities and absorption relative to dolomite FRAP. The higher 

absorption capacity of the SFS FRAP aggregates is caused by the SFS aggregate, which can 

have a higher absorption capacity relative to dolomite. The original pavements only contained 

about one-third SFS aggregate, so the SFS FRAP aggregate should have slightly higher 

specific gravities with the presence of the SFS aggregate. From Table 13, the SFS FRAP 

sources still have a significant amount of material passing the #4 (4.75 mm) sieve. In particular, 

SFS FRAP 3 has a high amount passing the #4 sieve, which is probably why the bulk unit 

weight is higher than the other FRAP sources.  
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Table 10. SFS FRAP 1 (Curran Contracting) Aggregate Properties 

 
Test 1 Test 2 Test 3 Average 

Relative SG (OD) 2.63 2.65 2.63 2.63 

Relative SG (SSD) 2.68 2.70 2.68 2.69 

Apparent SG 2.77 2.79 2.78 2.78 

Absorption (%) 1.96 2.02 2.01 2.00 

Bulk Unit Weight 
(lb/ft

3
) 

96.0 96.5 97.0 96.5 

Asphalt Content (%) 3.5 3.6 -- 3.6 

Gradation 

Sieve Size Cumulative Percent Passing 

3/4 in 19mm 100.0% 100.0% 100.0% 100.0% 

5/8 in 16mm 100.0% 100.0% 100.0% 100.0% 

1/2 in 12.5mm 99.8% 99.9% 99.8% 99.9% 

3/8 in 9.5mm 83.1% 83.6% 84.3% 83.7% 

1/4 in 6.35mm 37.9% 38.1% 38.8% 38.3% 

#4 4.75mm 13.2% 13.5% 13.3% 13.3% 

#8 2.36mm 4.1% 4.2% 3.5% 3.9% 

#16 1.18mm 3.1% 3.1% 2.4% 2.8% 

#30 0.6mm 2.7% 2.7% 2.1% 2.5% 

#50 0.3mm 2.3% 2.3% 1.9% 2.2% 

#100 0.15mm 1.7% 1.7% 1.6% 1.7% 

#200 0.075mm 0.9% 0.7% 0.8% 0.8% 
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Table 11. SFS FRAP 2 (Geneva Construction) Aggregate Properties 

 
Test 1 Test 2 Test 3 Average 

Relative SG (OD) 2.50 2.51 2.51 2.51 

Relative SG (SSD) 2.59 2.59 2.60 2.59 

Apparent SG 2.74 2.74 2.75 2.74 

Absorption (%) 3.53 3.41 3.40 3.44 

Bulk Unit Weight 
(lb/ft

3
) 

96.5 96.0 96.5 96.4 

Asphalt Content (%) 3.5 4.1 -- 3.8 

Gradation 

Sieve Size Cumulative Percent Passing 

3/4 in 19mm 100.0% 100.0% 100.0% 100.0% 

5/8 in 16mm 99.9% 99.7% 99.9% 99.9% 

1/2 in 12.5mm 97.6% 97.6% 98.4% 97.9% 

3/8 in 9.5mm 83.5% 83.8% 83.0% 83.4% 

1/4 in 6.35mm 40.6% 39.7% 39.1% 39.8% 

#4 4.75mm 15.2% 14.4% 13.8% 14.5% 

#8 2.36mm 7.5% 6.9% 6.4% 6.9% 

#16 1.18mm 6.6% 6.1% 5.7% 6.1% 

#30 0.6mm 6.1% 5.6% 5.3% 5.7% 

#50 0.3mm 4.7% 4.4% 4.3% 4.4% 

#100 0.15mm 2.8% 2.7% 2.7% 2.7% 

#200 0.075mm 0.7% 0.6% 0.5% 0.6% 
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Table 12. SFS FRAP 3 (Central Blacktop) Aggregate Properties 

 
Test 1 Test 2 Test 3 Average 

Relative SG (OD) 2.63 2.63 2.63 2.63 

Relative SG (SSD) 2.70 2.70 2.70 2.70 

Apparent SG 2.82 2.82 2.83 2.83 

Absorption (%) 2.64 2.59 2.72 2.65 

Bulk Unit Weight 
(lb/ft

3
) 

100.9 100.9 101.4 101.1 

Asphalt Content (%) 3.8 3.9 -- 3.9 

Gradation 

Sieve Size Cumulative Percent Passing 

3/4 in 19mm 100.0% 100.0% 100.0% 100.0% 

5/8 in 16mm 100.0% 100.0% 100.0% 100.0% 

1/2 in 12.5mm 99.5% 99.1% 99.1% 99.3% 

3/8 in 9.5mm 89.4% 87.6% 87.9% 88.3% 

1/4 in 6.35mm 59.2% 61.0% 60.3% 60.2% 

#4 4.75mm 38.9% 40.2% 39.6% 39.6% 

#8 2.36mm 12.2% 12.5% 12.0% 12.2% 

#16 1.18mm 6.5% 6.7% 6.3% 6.5% 

#30 0.6mm 5.2% 5.4% 5.0% 5.2% 

#50 0.3mm 4.1% 4.4% 4.1% 4.2% 

#100 0.15mm 2.2% 2.2% 2.3% 2.3% 

#200 0.075mm 0.4% 0.4% 0.4% 0.4% 
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Table 13. Comparison of SFS FRAP and Dolomite FRAP Aggregate Properties 

  

SFS 
FRAP 1 

SFS 
FRAP 2 

SFS 
FRAP 3 

Clean 
FRAP* 

Unwashed 
Dirty 

FRAP* 

Washed 
Dirty 

FRAP* 
FRAP** 

Relative SG (OD) 2.63 2.51 2.63 2.53 2.52 -- 2.50 

Relative SG 
(SSD) 

2.69 2.59 2.70 2.59 2.56 -- 2.54 

Apparent SG 2.78 2.74 2.83 2.70 2.64 -- 2.62 

Absorption (%) 2.00 3.44 2.65 2.45 1.79 -- 1.96 

Bulk Unit Weight 
(lb/ft

3
) 

96.5 96.4 101.1  93.4 90.1 -- 94.8 

Asphalt Content 
(%) 

3.6 3.8 3.9 2.14 3.26 -- 3.76 

Gradation (Cumulative Percent Passing) 

Sieve Size 
SFS 

FRAP 1 
SFS 

FRAP 2 
SFS 

FRAP 3 
Clean 
FRAP* 

Unwashed 
Dirty 

FRAP* 

Washed 
Dirty 

FRAP* 
FRAP** 

1 in 25mm 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

3/4 in 19mm 100.0% 100.0% 100.0% 99.9% 100.0% 100.0% 100.0% 

5/8 in 16mm 100.0% 99.9% 100.0% -- -- -- 100.0% 

1/2 in 12.5mm 99.9% 97.9% 99.3% 78.4% 99.3% 99.4% 65.0% 

3/8 in 9.5mm 83.7% 83.4% 88.3% 37.9% 86.3% 82.7% 25.2% 

1/4 in 6.35mm 38.3% 39.8% 60.2% -- -- -- 14.5% 

#4 4.75mm 13.3% 14.5% 39.6% 3.6% 21.9% 4.5% 8.3% 

#8 2.36mm 3.9% 6.9% 12.2% 1.6% 5.5% 0.2% 3.0% 

#16 1.18mm 2.8% 6.1% 6.5% 1.1% 2.8% 0.1% 1.5% 

#30 0.6mm 2.5% 5.7% 5.2% 0.8% 1.9% 0.1% 1.0% 

#50 0.3mm 2.2% 4.4% 4.2% 0.6% 1.3% 0.1% 0.7% 

#100 0.15mm 1.7% 2.7% 2.3% 0.3% 0.7% 0.1% 0.3% 

#200 0.075mm 0.8% 0.6% 0.4% 0.1% 0.3% 0.0% 0.1% 

*Source: Brand et al. (2012); **source: Brand et al. (2013) 
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Figure 5. Gradation comparisons between various SFS and dolomite FRAP sources. 

 

3.1.2 Virgin SFS Aggregate Physical Properties 

For the virgin SFS aggregates, the unit weights, specific gravities, and gradations are 

shown in Table 14 (Virgin SFS 1), Table 15 (Virgin SFS 2), and Table 16 (Virgin SFS 3). As 

expected, the specific gravities are higher than virgin dolomite aggregates (Table 17), given the 

composition of SFS aggregates contains heavier elements, such as iron. In general, the specific 

gravity of SFS aggregates can be around 3.2 to 3.5 (Emery 1982). Overall, it appears that the 

BOF slag has a higher absorption but lower specific gravity than the two EAF slags.  
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Table 14. Virgin SFS 1 (BOF) Aggregate Properties 

  Test 1 Test 2 Test 3 Average 

Relative SG (OD) 3.27 3.25 3.26 3.26 

Relative SG (SSD) 3.34 3.32 3.33 3.33 

Apparent SG 3.53 3.52 3.52 3.52 

Absorption (%) 2.32 2.36 2.26 2.31 

Bulk Unit Weight 
(lb/ft

3
) 

127.7 128.2 127.7 127.9 

Gradation 

Sieve Size Cumulative Percent Passing 

3/4 in 19mm 100.0% 100.0% 100.0% 100.0% 

5/8 in 16mm 100.0% 99.9% 99.9% 99.9% 

1/2 in 12.5mm 89.5% 89.2% 89.3% 89.4% 

3/8 in 9.5mm 52.8% 54.0% 49.9% 52.2% 

1/4 in 6.35mm 10.8% 16.2% 8.9% 12.0% 

#4 4.75mm 5.9% 10.9% 4.7% 7.2% 

#8 2.36mm 4.3% 8.7% 3.4% 5.5% 

#16 1.18mm 3.9% 7.7% 3.1% 4.9% 

#30 0.6mm 3.6% 6.3% 2.8% 4.2% 

#50 0.3mm 2.9% 4.5% 2.3% 3.2% 

#100 0.15mm 1.9% 2.4% 1.7% 2.0% 

#200 0.075mm 0.6% 0.7% 0.6% 0.6% 
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Table 15. Virgin SFS 2 (EAF) Aggregate Properties 

  Test 1 Test 2 Test 3 Average 

Relative SG (OD) 3.65 3.63 3.64 3.64 

Relative SG (SSD) 3.72 3.70 3.70 3.70 

Apparent SG 3.91 3.88 3.88 3.89 

Absorption (%) 1.79 1.77 1.69 1.75 

Bulk Unit Weight 
(lb/ft

3
) 

130.2 130.6 131.1 130.6 

Gradation 

Sieve Size Cumulative Percent Passing 

3/4 in 19mm 100.0% 100.0% 100.0% 100.0% 

5/8 in 16mm 100.0% 100.0% 100.0% 100.0% 

1/2 in 12.5mm 99.9% 99.8% 99.8% 99.9% 

3/8 in 9.5mm 83.0% 83.3% 83.6% 83.3% 

1/4 in 6.35mm 47.1% 43.8% 45.0% 45.3% 

#4 4.75mm 25.0% 23.1% 24.2% 24.1% 

#8 2.36mm 4.8% 4.5% 4.8% 4.7% 

#16 1.18mm 2.3% 2.1% 2.2% 2.2% 

#30 0.6mm 1.9% 1.8% 1.9% 1.9% 

#50 0.3mm 1.7% 1.5% 1.6% 1.6% 

#100 0.15mm 1.3% 1.2% 1.3% 1.3% 

#200 0.075mm 0.9% 0.9% 0.9% 0.9% 
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Table 16. Virgin SFS 3 (EAF/LMF) Aggregate Properties 

  Test 1 Test 2 Test 3 Average 

Relative SG (OD) 3.47 3.43 3.46 3.45 

Relative SG (SSD) 3.53 3.49 3.52 3.51 

Apparent SG 3.69 3.66 3.67 3.68 

Absorption (%) 1.71 1.86 1.65 1.74 

Bulk Unit Weight 
(lb/ft

3
) 

123.8 123.3 123.3 123.5 

Gradation 

Sieve Size Cumulative Percent Passing 

3/4 in 19mm 100.0% 100.0% 100.0% 100.0% 

5/8 in 16mm 100.0% 100.0% 100.0% 100.0% 

1/2 in 12.5mm 96.5% 96.2% 96.4% 96.3% 

3/8 in 9.5mm 73.6% 75.7% 72.1% 73.8% 

1/4 in 6.35mm 30.7% 29.4% 24.3% 28.2% 

#4 4.75mm 13.0% 11.4% 4.8% 9.7% 

#8 2.36mm 3.1% 2.8% 3.6% 3.2% 

#16 1.18mm 2.8% 2.5% 3.2% 2.9% 

#30 0.6mm 2.7% 2.4% 3.1% 2.7% 

#50 0.3mm 2.2% 1.9% 2.5% 2.2% 

#100 0.15mm 1.4% 1.3% 1.5% 1.4% 

#200 0.075mm 0.6% 0.6% 0.6% 0.6% 
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Table 17. Comparison of Virgin SFS with Virgin Dolomite and SFS FRAP Aggregate Properties 

  
Virgin 
SFS 1 
(BOF) 

Virgin 
SFS 2 
(EAF) 

Virgin 
SFS 3 
(EAF/ 
LMF) 

Virgin 
Dolomite* 

SFS 
FRAP 1 

SFS 
FRAP 2 

SFS 
FRAP 3 

Relative SG (OD) 3.26 3.64 3.45 2.67 2.63 2.51 2.63 

Relative SG (SSD) 3.33 3.70 3.51 2.72 2.69 2.59 2.70 

Apparent SG 3.52 3.89 3.68 2.81 2.78 2.74 2.83 

Absorption (%) 2.31 1.75 1.74 1.80 2.00 3.44 2.65 

Bulk Unit Weight 
(lb/ft

3
) 

127.9  130.6  123.5 96.9 96.5 96.4 101.1  

Gradation (Cumulative Percent Passing) 

Sieve Size 
Virgin 
SFS 1 

Virgin 
SFS 2 

Virgin 
SFS 3 

Virgin 
Dolomite* 

SFS 
FRAP 1 

SFS 
FRAP 2 

SFS 
FRAP 3 

1 in 25mm  100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

3/4 in 19mm 100.0% 100.0% 100.0% 96.2% 100.0% 100.0% 100.0% 

5/8 in 16mm 99.9% 100.0% 100.0% -- 100.0% 99.9% 100.0% 

1/2 in 12.5mm 89.4% 99.9% 96.3% 36.5% 99.9% 97.9% 99.3% 

3/8 in 9.5mm 52.2% 83.3% 73.8% 11.1% 83.7% 83.4% 88.3% 

1/4 in 6.35mm 12.0% 45.3% 28.2% -- 38.3% 39.8% 60.2% 

#4 4.75mm 7.2% 24.1% 9.7% 1.3% 13.3% 14.5% 39.6% 

#8 2.36mm 5.5% 4.7% 3.2% 1.1% 3.9% 6.9% 12.2% 

#16 1.18mm 4.9% 2.2% 2.9% 1.1% 2.8% 6.1% 6.5% 

#30 0.6mm 4.2% 1.9% 2.7% 1.1% 2.5% 5.7% 5.2% 

#50 0.3mm 3.2% 1.6% 2.2% 1.0% 2.2% 4.4% 4.2% 

#100 0.15mm 2.0% 1.3% 1.4% 0.9% 1.7% 2.7% 2.3% 

#200 0.075mm 0.6% 0.9% 0.6% 0.7% 0.8% 0.6% 0.4% 

*Source: Brand and Roesler (2014) 

 

3.2 SFS FRAP ASPHALT CHARACTERIZATION 

To obtain a sufficient quantity of asphalt needed for characterization, only one test was 

conducted using a quantity of asphalt binder from numerous extractions. The original grade of 

the asphalt used in the pavement from which the SFS FRAP was obtained was PG 76-22. The 

grades of the extracted asphalt are shown in Table 18. Previous results suggested that the low 

temperature grade of the extracted FRAP does not change (Brand et al. 2012), so only the low 

temperature grade of SFS FRAP 3 was tested. In fact, only SFS FRAP 3 was the only FRAP 

source that experienced a change in the high-temperature performance grade, i.e., PG 82-22 

versus the original PG 76-22.  

 

Table 18. Performance Grade of the Extracted SFS FRAP Asphalt 

Sample 
Original Performance 

Grade 
Performance Grade of 
the Extracted Asphalt* 

SFS FRAP 1 (Curran) PG 76-22 PG 76 

SFS FRAP 2 (Geneva) PG 76-22 PG 76 

SFS FRAP 3 (Central Blacktop) PG 76-22 PG 82-22 
*Low temperature grade only determined for SFS FRAP 3 
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3.3 MINERALOGICAL COMPOSITION 

The virgin SFS and SFS FRAP aggregates with binder removed were crushed 

(powdered) and the particles passing the #100 sieve (≤150 μm) and the #325 sieve (≤44 μm) 

were collected for powder XRD; this ensured that a representative mineralogical sample was 

obtained from the stockpile since all aggregate sizes were crushed. A Siemens-Bruker D5000 

XRD was used, which utilizes copper (Cu) Kα radiation and has a graphite monochromator and 

a scintillation detector. The machine was operated at 40 kV and 30 mA. The sample size was 

0.5 cm3. The scan range was from 10° to 80° with an increment of 0.02° and a scan speed of 

0.5 degrees per minute.  

The identified phases for virgin SFS are summarized in Table 19 with individual scans 

shown in Figure 6 to Figure 12. Comparing the SFS compositions with those from other studies 

(previously shown in Table 2) generally suggests they are similar to other published SFS. 

However, many of the peaks of the identified phases overlap, which indicates that steel slag is a 

multi-phase material with numerous impure phases that can have interstitial elements, which 

skews the peak location and makes it difficult to definitively identify the phases. Wüstite and 

larnite were the most prevalently identified phases in the SFS. The other phases that were 

identified, while potentially present in the sample, were not as definitively identified by the 

analysis software.  

Evidence of carbonation was noted in the first scan of the virgin SFS 1 (BOF) sample 

(Figure 6), so a second scan was performed (Figure 7), which indicated evidence of free CaO 

that was instead identified in the carbonated calcite form in the first scan. All phases identified 

for Virgin SFS 1 (BOF) were in agreement with previous literature, with the exception of the 

magnesioferrite phase, which is not a commonly-identified phase for BOF SFS. However, this 

phase appeared to fit the XRD pattern better than the other potential phases. 

The phases identified for Virgin SFS 2 (EAF) matched rather well with the commonly 

identified phases in the literature for EAF SFS. Only three phases were identified for Virgin SFS 

3 (EAF/LMF), which were commonly identified phases for EAF SFS. However, it can be noted 

that XRD patterns for Virgin SFS 3 (EAF/LMF) contain relatively fewer peaks and is less noisy 

than the XRD patterns for the other virgin SFS samples, so it is possible that virgin SFS 3 

(EAF/LMF) does not have as many mineralogical phases.  

The presence of CaO was only detected in Virgin SFS 1 (BOF), which is the free CaO in 

the slag. As shown later in Section 3.5, Virgin SFS 1 (BOF) had the highest measured free CaO 

content of the virgin SFS samples. The free CaO contents in the other SFS samples were likely 

too low to be detected by XRD. None of the virgin SFS samples had detectable periclase 

(MgO), which suggests the following: 1) the MgO in the samples is assimilated into other 

phases (i.e. magnesioferrite, bredigite) and is not in an unassimilated “free” state for reaction 

and/or 2) the “free” MgO amount is low enough that it is not detectable by XRD.  

The identified phases for SFS FRAP (with asphalt binder removed) are summarized in 

Table 19 and shown in individual scans in Figure 13 to Figure 18. Dolomite was predominantly 

identified, with some additional evidence of calcite and quartz (likely from the virgin aggregates 

in the original aggregate blend) with wüstite potentially identified in the smaller peaks. The 

sample was mainly dolomite aggregate and therefore it was expected that XRD would mainly 

identify the dolomitic phases. In order to better identify the phases present in the SFS from the 

SFS FRAP, the samples were visually separated into the natural and SFS aggregate types and 
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then the SFS was crushed and scanned separately. The SFS particles were taken from the 

FRAP samples that were used to determine the asphalt content and/or from the methylene 

chloride extractions to prepare the autoclave samples. The identified phases were similar from 

all three FRAP samples, and the identified phases confirmed that the SFS in the FRAP was 

BOF slag, mainly because of the presence of srebrodolskite (Ca2Fe2O5), which is predominantly 

found in BOF slag (see literature summary shown in Table 2). The free CaO content was 

apparently high enough to be identified in SFS FRAP 1 and 2 but not SFS FRAP 3.  
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Table 19. Identified Mineralogical Phases Present in the SFS FRAP and Virgin SFS Samples 

Phase 
SFS 

FRAP 1 
SFS 

FRAP 2 
SFS 

FRAP 3 
Virgin SFS 

1 (BOF) 
Virgin SFS 

2 (EAF) 
Virgin SFS 3 
(EAF/LMF) 

Virgin 
Coarse 

Aggregate* 

Virgin Fine 
Aggregate 

(Natural Sand)* 

Dolomite 
(CaMg(CO3)2) 

X X X    X X 

Quartz (SiO2) X X X     X 

Larnite, Dicalcium 
Silicate (Ca2SiO4) 

X X X X X X   

Tricalcium Silicate 
(Ca3SiO5) 

   X     

Calcium Oxide 
(CaO) 

X X  X     

Calcite (CaCO3)  X X X     

Wüstite (FeO) X X X X X X   

Magnetite (Fe3O4)     X    

Magnesioferrite 
(MgFe2O4) 

   X     

Bredigite 
(Ca7Mg(SiO4)4) 

    X    

Srebrodolskite 
(Ca2Fe2O5) 

X X X X     

Mayenite 
(Ca12Al14O33) 

    X X   

*Source: Brand et al. (2012) 
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Figure 6. XRD scan and identified phases for Virgin SFS 1 (BOF), ≤150 μm particle size. 
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Figure 7. Second XRD scan and identified phases for Virgin SFS 1 (BOF), ≤150 μm particle 

size. 



57 

 

 
Figure 8. XRD scan and identified phases for Virgin SFS 1 (BOF), ≤44 μm particle size. 
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Figure 9. XRD scan and identified phases for Virgin SFS 2 (EAF), ≤150 μm particle size. 
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Figure 10. XRD scan and identified phases for Virgin SFS 2 (EAF), ≤44 μm particle size. 
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Figure 11. XRD scan and identified phases for Virgin SFS 3 (EAF/LMF), ≤150 μm particle 

size. 
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Figure 12. XRD scan and identified phases for Virgin SFS 3 (EAF/LMF), ≤44 μm particle 

size. 
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Figure 13. XRD scan and identified phases for SFS FRAP 1 (Curran) with asphalt binder 

removed, ≤150 μm particle size. 
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Figure 14. XRD scan and identified phases for the SFS from SFS FRAP 1 (Curran) with 

asphalt binder removed, ≤150 μm particle size. 
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Figure 15. XRD scan and identified phases for SFS FRAP 2 (Geneva) with asphalt binder 

removed, ≤150 μm particle size. 
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Figure 16. XRD scan and identified phases for the SFS from SFS FRAP 2 (Geneva) with 

asphalt binder removed, ≤150 μm particle size. 
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Figure 17. XRD scan and identified phases for SFS FRAP 3 (Central Blacktop) with asphalt 

binder removed, ≤150 μm particle size. 
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Figure 18. XRD scan and identified phases for the SFS from SFS FRAP 3 (Central Blacktop) 

with asphalt binder removed, ≤150 μm particle size. 

 

3.4 CHEMICAL COMPOSITION  

The chemical composition of the SFS samples was determined using inductively 

coupled plasma optical emission spectroscopy (ICP-OES). A PerkinElmer Optima 2000DV 

ICP-OES was used for the analysis. The particles of the tested sample were all passing the 

#100 sieve (≤150 μm); this ensured that a representative sample was obtained from the 

stockpile since all aggregate sizes were crushed. The composition detection was limited to 

only the main metallic elements in typical SFS samples, namely iron, calcium, silicon, 

magnesium, manganese, aluminum, titanium, sulfur, phosphorus, and chromium, as 

indicated previously by Table 1.  
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The samples were prepared for ICP-OES by acid digestion. A solution of nitric acid 

and hydrochloric acid was used with a microwave digester to prepare the sample to test for 

all of the aforementioned elements except for titanium and silicon. A solution of nitric acid, 

hydrochloric acid, and hydrofluoric acid was used with a microwave digester to prepare the 

sample to test for the titanium and silicon contents.  

The ICP-OES analysis provides elemental composition (Table 20), but these values 

are commonly reported as the oxide contents. The oxide contents were determined 

stoichiometrically based on the elemental and oxide compound molecular weights. The 

calculated oxide contents for the virgin SFS samples are shown in Table 21, and, overall, 

the values agree with the literature. The CaO and SiO2 contents appear to be lower than 

expected. In particular, the SiO2 content was significantly lower for virgin SFS 3, which could 

perhaps be attributed to the LMF process. The composition of SFS is highly variable, 

depending on the location, process, and materials, so it is perhaps not surprising that the 

results reported here differ from the “typical” values reported in the literature. The oxide 

contents for the SFS FRAP samples (with asphalt removed) are shown in Table 22. 

Because of the presence of dolomite coarse aggregate, the MgO content is higher than a 

typical BOF slag composition and the CaO content is similar to typical BOF slag. The quartz 

present in the original HMA may have increased the SiO2 content, particularly as noted in 

SFS FRAP 1. The overall contents of Cr, Fe, Mn, P, S, and Ti were all lower than typical 

BOF because these elements are not generally found in significant quantities in dolomite 

and quartz.  

 

Table 20. Elemental Compositions Determined by ICP-OES 

Element 
Virgin SFS 

1 (BOF) 
Virgin SFS 

2 (EAF) 
Virgin SFS 3 
(EAF/LMF) 

SFS FRAP 1 
(Curran) 

SFS FRAP 2 
(Geneva) 

SFS FRAP 3 
(Central Blacktop) 

Al 1.24% 2.08% 3.74% 0.37% 0.43% 0.54% 

Ca 7.86% 16.96% 19.38% 12.10% 19.30% 22.50% 

Cr 0.12% 0.42% 0.37% 0.02% 0.04% 0.04% 

Fe 26.20% 23.91% 25.68% 3.70% 7.24% 5.46% 

Mg 7.66% 5.11% 5.74% 7.48% 11.21% 14.70% 

Mn 1.82% 3.53% 1.90% 0.48% 0.63% 0.70% 

P 0.25% 0.15% 0.22% 0.07% 0.14% 0.13% 

S 0.11% 0.08% 0.15% 0.06% 0.09% 0.11% 

Si 4.34% 4.50% 0.48% 5.96% 4.06% 3.73% 

Ti 0.15% 0.27% 0.22% 0.10% 0.07% 0.06% 
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Table 21. Elemental and Oxide Compositions of Virgin SFS 

Compound 
Virgin SFS 1 

(BOF) 
Typical 

Values (BOF) 
Virgin SFS 

2 (EAF) 
Virgin SFS 3 
(EAF/LMF) 

Typical 
Values (EAF) 

Al2O3 2.3% 1-6%* 3.9% 7.1% 2-9%* 

CaO 11.0% 30-55%* 18.8% 27.1% 35-60%* 

Cr 0.1% 0.1-0.5%* 0.4% 0.4% 0.1-1%* 

Total Fe 26.2% 14-22%** 23.9% 25.7% 20-30%** 

MgO 12.7% 5-15%* 8.5% 9.5% 5-15%* 

Total Mn 1.8% 1-5%** 3.5% 1.9% 2-8%** 

P 0.3% 0.2-2%* 0.2% 0.2% 0.01-0.25%* 

S 0.1% 0.05-0.15%* 0.1% 0.2% 0.08-0.2%* 

SiO2 9.3% 8-20%* 9.6% 1.0% 9-20%* 

TiO2 0.3% 0.4-2%* 0.5% 0.4% 0.3-1%*** 

References: *Shi (2004), **Balcázar et al. (1999), ***Gutt and Nixon (1979) 

 

Table 22. Elemental and Oxide Compositions of SFS FRAP 

Compound 
SFS FRAP 1 

(Curran) 
SFS FRAP 2 

(Geneva) 

SFS FRAP 3 
(Central 

Blacktop) 

Typical Values 
(BOF Slag) 

Al2O3 0.70% 0.81% 1.0% 1-6%* 

CaO 16.9% 27.0% 31.5% 30-55%* 

Cr 0.02% 0.04% 0.04% 0.1-0.5%* 

Total Fe 3.7% 7.2% 5.5% 14-22%** 

MgO 12.4% 18.6% 24.4% 5-15%* 

Total Mn 0.48% 0.63% 0.70% 1-5%** 

P 0.07% 0.14% 0.13% 0.2-2%* 

S 0.06% 0.09% 0.11% 0.05-0.15%* 

SiO2 12.7% 8.7% 8.0% 8-20%* 

TiO2 0.16% 0.12% 0.10% 0.4-2%* 

References: *Shi (2004), **Balcázar et al. (1999), ***Gutt and Nixon (1979) 

 

3.5 FREE CALCIUM OXIDE AND MAGNESIUM OXIDE CONTENTS 

3.5.1 Free CaO Contents  

Based on the literature, the free CaO content of SFS is commonly determined by a 

complexometric titration technique using an ethylene glycol extraction with an acid titration 

and a pH indicator. For the existing documentation on determining the free CaO specifically 

of SFS, EN 1744-1:2009+A1 (2013) details extracting the calcium ions in ethylene glycol for 

30 minutes in a 70°C water bath, while the Ministry of Transportation of Ontario specifies an 

extraction in a solution of 2/3 ethylene glycol and 1/3 methyl alcohol for 30 minutes in a 

boiling water bath (MTO 1996). Gupta et al. (1994) also used heated ethylene glycol (60 to 

70°C) but did not specify the total time of extraction. Therefore, for this study, the extraction 

temperature would be at 100°C with hot ethylene glycol. 
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The extraction procedure followed was that about one gram of sample was weighted 

out. The material was all passing the #100 sieve (≤150 μm). The sample was added to a 

flask with 50 mL of ethylene glycol, which was stirred continuously (via magnetic stirrer) in a 

95±5°C water bath on a hot plate for 30 minutes (Figure 19). The solution was then filtered 

under vacuum suction through filter paper that had been wetted with ethylene glycol. The 

flask was rinsed twice with 10 mL of ethylene glycol, which was then also filtered. Ten drops 

of phenolphthalein solution were added to the filtrate, which was then titrated with 0.05 N 

hydrochloric acid (HCl).  

 

 
Figure 19. Hot water bath arrangement for ethylene glycol extraction. 

 

Studies of SFS have suggested that ethylene glycol will dissolve both CaO and 

Ca(OH)2 (Thomas 1983; Motz and Geiseler 2000; Lun et al. 2008; Belhadj et al. 2012), 

which is not necessarily correct. Rather, ethylene glycol will dissolve, or, more precisely, 

form a complex with, the calcium ions from the free CaO but not necessarily all of the free 

Ca(OH)2. MacPherson and Forbrich (1937) were the first to recognize that ethylene glycol 

may not dissolve all of the available Ca(OH)2, possibly as a result of the large crystal sizes. 

Therefore, the complexometric titration test was used to determine an ethylene glycol 

number (EGN), which represents the total free CaO and anywhere from all to none of the 

available Ca(OH)2 in the sample. The EGN is determined based on the initial mass in grams 
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of the SFS sample (m), the normality of the HCl (NHCl), the volume in mL of HCl titrated 

(VHCl), a correction for the volume in mL of HCl titrated in a blank ethylene glycol sample 

(Vblank), and an equivalency factor (F): 

 
     [

    (           )

    
] (1)  

The equivalency factor F for this method and equation formulation is 28 (Javellana and 

Jawed 1982; MTO 1996). The correction Vblank is specified in other standards (EN 1744-

1:2009+A1 2013) to account for the amount of HCl needed to titrate a plain solvent sample 

(i.e., plain ethylene glycol). To determine Vblank, 70 mL of 70°C ethylene glycol was titrated 

with 0.05 N HCl and a phenolphthalein indicator, which resulted in Vblank = 0 mL; this is a 

reasonable result because the pH of ethylene glycol is close to neutral.  

To test the validity of this test procedure, samples of CaO, Ca(OH)2, CaCO3, and 

CaMg(CO3)2 were also tested using particle sizes ≤ 44 μm. The pure CaO was created by 

heating a sample of reagent grade CaO in an oven at 1000°C to effectively remove all 

Ca(OH)2 and CaCO3 present. The results in Table 23 indicate that both CaO and Ca(OH)2 

are dissolved by ethylene glycol while CaCO3 and CaMg(CO3)2 are not. The pure CaO 

sample created by heating CaCO3 did not yield a 100% free CaO content like the pure CaO 

sample derived from heating reagent grade CaO, which can be possibly because not all of 

the CaCO3 decomposed into CaO or some of the sample re-carbonated as the sample 

cooled.  

As can be noted, the free calcium ion content from the Ca(OH)2 is less than 100%, 

which is expected because the ethylene glycol forms a complex with the CaO from the 

Ca(OH)2. Stoichiometrically, the estimated Ca(OH)2 content is 96.8% for the EGN value of 

73.3%, which is reasonable considering that the reagent purity of the sample was ≥95%. 

This suggests that ethylene glycol will dissolve the available free Ca(OH)2.  

The filtrate of the EAF SFS and EAF/LMF SFS samples was clear, so it was 

relatively easy to see the final titration point when the pink color from phenolphthalein 

disappeared. However, the filtrate of the BOF SFS was orange-red in color, so to determine 

the final titration point, two samples of filtrate were placed side-by-side, and the 

phenolphthalein was added to one of the samples and then titrated with HCl until the color 

returned to the initial orange-red. The average EGN values were found to be: 4.4% for the 

virgin BOF SFS, 0.06% for the virgin EAF SFS, and 0.5% for the virgin EAF/LMF SFS. 

These values are not surprising considering that the free CaO content can be 1-10% for 

BOF slag and 0-4% for EAF (Balcázar et al. 1999). It is not unexpected that the free CaO 

content of the BOF slag was high, given that, when crushed, particles of unassimilated CaO 

could be clearly seen (Figure 20).  

The SFS from the SFS FRAP samples also contained relatively high EGN values 

(Table 23), which is consistent with the SFS sources coming from BOF slags. However, the 

high EGN value is somewhat unexpected given that the samples were taken from existing 

pavements, and it was assumed a significant amount of weathering had occurred. 

Therefore, it appears that the asphalt coating in the field prevented the SFS from 

significantly hydrating the CaO and assumedly MgO.  
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Table 23. Ethylene Glycol Numbers as Determined by Complexometric Titration 

Sample 
Test 

Replicate 
Sample 

weight (g) 
Molarity 
of HCl 

Amount HCl 
Titrated (mL) 

Ethylene Glycol 
Number (EGN) 

Pure CaO* 1 0.3315 0.05 239.0 100.9 

Pure CaO** 1 0.4985 0.05 325.0 91.3 

Ca(OH)2 1 0.6592 0.05 345.0 73.3 

CaCO3 1 0.9102 0.05 0 0.0 

CaMg(CO3)2 1 1.0278 0.05 0 0.0 

SFS Tested “As Is” 

Virgin SFS 1 
(BOF) 

1 1.0575 0.05 33.6 4.45 

2 1.0760 0.05 33.4 4.35 

Virgin SFS 2 
(EAF) 

1 0.9899 0.05 0.4 0.06 

2 1.0067 0.05 0.4 0.06 

Virgin SFS 3 
(EAF/LMF) 

1 0.9757 0.05 3.6 0.52 

2 1.0529 0.05 3.8 0.51 

SFS from SFS 
FRAP 1 (Curran) 

1 1.0050 0.05 29.0 4.04 

2 1.0226 0.05 28.8 3.94 

SFS from SFS 
FRAP 2 (Geneva) 

1 1.0070 0.05 27.2 3.78 

2 0.9794 0.05 25.4 3.63 

SFS from SFS 
FRAP 3 (Central 
Blacktop) 

1 1.0486 0.05 39.2 5.23 

2 1.0244 0.05 36.1 4.93 

Created by heating reagent grade CaO*, CaCO3** 

 

 
Figure 20. Particles of unassimilated CaO (white particles) could be seen in the Virgin SFS 1 

(BOF) sample after crushing. 
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Because Ca(OH)2 is not necessarily fully dissolved by ethylene glycol (MacPherson 

and Forbrich 1937), another method was devised to determine the total free CaO content. In 

this method, the powdered SFS sample was heated in an oven to 1000°C to convert the 

samples Ca(OH)2 and CaCO3 to CaO and then cooled to room temperature in the oven. The 

idea was to test the heat-treated SFS using the ethylene glycol extraction technique to 

determine the existing free CaO content (Table 24), and then adjust the value based on the 

Ca(OH)2 and CaCO3 contents from TGA. Because it was assumed in this case that all of the 

Ca(OH)2 and CaCO3 in the sample was converted to CaO after heating, the computed EGN 

was simply assumed to be the total free CaO. This idea was only applied to Virgin SFS 2 

and 3 because it was evident that, while the percent free CaO content determined increased 

(compare Table 24 to Table 23), adjusting the measured free CaO content based on the 

CaO contents predicted by TGA would result in a negative free CaO content. For the Virgin 

SFS 3 example, the Ca(OH)2 and CaCO3 contents from TGA were 0.87% and 2.33%, 

respectively, which would estimate CaO contents, based on the molar mass ratios, of 0.66% 

and 1.31% from Ca(OH)2 and CaCO3, respectively. However, only 1.07% free CaO was 

directly measured. Therefore, upon cooling, some of the CaO could be carbonating, 

preventing the CaO from being dissolved by the ethylene glycol. The temperature affects the 

carbonation kinetics of CaO. In a study by Rouchon et al. (2013), CaCO3 was calcined in an 

inert atmosphere and then the temperature was reduced to various levels (650, 600, 550, 

500, and 450°C) before introducing CO2, and it was found that the lower temperatures 

resulted in less formation of CaCO3 at a given exposure time.   

 

Table 24. Free CaO Content of Heated Samples (Cooled in the Oven) as Determined by 

Ethylene Glycol Extraction 

Sample 
Test 

Replicate 
Sample 

weight (g) 
Molarity 
of HCl 

Amount HCl 
Titrated (mL) 

Percent 
Free CaO 

Virgin SFS 2 
(EAF) 

1 1.0216 0.05 0.7 0.10 

2 1.0052 0.05 1.0 0.14 

Virgin SFS 3 
(EAF/LMF) 

1 1.0350 0.05 7.9 1.07 

2 0.9856 0.05 7.6 1.08 

 

One final heating scheme was devised and tested in which the sample was heated to 

1000°C and then immediately placed under vacuum so that, upon cooling, the sample could 

not carbonate. A similar method could also be tested in which the sample is heated and 

cooled in an inert environment (such as nitrogen) to prevent carbonation, but because such 

equipment was not available, the previously described heating and cooling scheme was 

tested. Again, it was assumed that the computed EGN only represented the total free CaO. 

However, as is indicated in Table 25, this test did not prove to be successful. It is suspected 

that the sample re-carbonated while cooling as the sample was moved from the oven to the 

vacuum, as Virgin SFS 2 (EAF) did not even indicate the presence of any CaO.  
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Table 25. Free CaO Content of Heated Samples (Cooled Under Vacuum) as Determined by 

Ethylene Glycol Extraction 

Sample 
Test 

Replicate 
Sample 

Weight (g) 
Molarity 
of HCl 

Amount HCl 
Titrated (mL) 

Percent 
Free CaO 

Virgin SFS 2 
(EAF) 

1 1.0074 0.05 0.0 0.00 

Virgin SFS 3 

(EAF/LMF) 

1 1.0091 0.05 4.2 0.58 

2 1.0401 0.05 3.6 0.48 

3 1.0181 0.05 3.8 0.52 

 

Based on the findings, the EGN values reported in Table 23 were deemed to be the 

most acceptable. Because a sample of pure Ca(OH)2 was found to be entirely complexed by 

ethylene glycol, it is assumed that, at least in this testing scenario, the ethylene glycol is 

complexing with all of the available Ca(OH)2 in the SFS and SFS FRAP samples. Therefore, 

TGA testing was performed to determine the Ca(OH)2 contents of the SFS samples in order 

to estimate (or backcalculate) a total free CaO content of the sample.  

 

3.5.2 MgO Content  

The European Standard EN 1744-1:2009+A1 (2013)  states: “The total MgO content 

is used as a measure of free MgO, in the absence, at present of a reliable method of 

determining the content of free MgO.” The standard then references using EN 196-2 to 

determine the MgO content of the SFS, which is a specified standard method to use x-ray 

fluorescence to determine the chemical composition of cement. Therefore, it is assumed that 

the Mg content determined from the ICP-OES method (Table 26) is a suitable 

representation of the total MgO content of the SFS sample. However, because MgO was not 

identified by XRD (see Section 3.3) – which suggests that the free MgO content is not high 

enough to be detected by XRD (unlike the free CaO detected for Virgin SFS 1 (BOF), which 

had a high enough content) – it is unclear whether or not these samples actually contain any 

free MgO available for reaction. In addition, the MgO content from ICP-OES for the SFS 

FRAP does not represent the content from the SFS aggregate alone; it is from both the SFS 

and the dolomite aggregate. However, one possible method for backcalculating the initial 

free MgO content is by TGA after autoclaving the SFS sample, as will be discussed in 

Section 3.6.1.   

 

Table 26. MgO Content Determined by ICP-OES 

Sample MgO Content 

Virgin SFS 1 (BOF) 12.7% 

Virgin SFS 2 (EAF) 8.5% 

Virgin SFS 3 (EAF/LMF) 9.5% 

SFS FRAP 1 (Curran) 12.4% 

SFS FRAP 2 (Geneva) 18.6% 

SFS FRAP 3 (Central Blacktop) 24.4% 
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3.5.3 Hydroxide and Carbonate Contents  

Knowing that ethylene glycol will complex with the free CaO and the free Ca(OH)2, 

thermogravimetric analysis (TGA) was used to estimate the Ca(OH)2 content in order to 

refine the total free CaO measurement, as has been conducted in other studies of SFS 

(Thomas 1983; Kneller et al. 1994; Gumieri et al. 2004; Lun et al. 2008; Waligora et al. 

2010; Papayianni and Anastasiou 2011; Belhadj et al. 2012). TGA was selected as the 

appropriate thermal analysis technique because other studies have found the results to be 

more reliable compared with differential thermal analysis (Thomas 1983). The percent free 

CaO content (CaOfree) can thus be determined from a combination of the complexometric 

titration and TGA methods by subtracting the TGA-estimated Ca(OH)2 (CHTGA) content from 

the EGN value. A correction factor f can be included in the equation to account for the 

estimated amount of Ca(OH)2 that was dissolved by the ethylene glycol. In this situation, f 

can vary from 0% to 100%. Because it could not be definitively concluded what the factor f 

actually is and because the sample of ≥95% reagent grade Ca(OH)2 indicated that all of the 

Ca(OH)2 complexed with ethylene glycol, it is assumed for this study that f is 100%.  

              (     ) (2)  

For the thermal analysis, a TA Instruments Q50 TGA was used in this analysis, 

which heated the sample to 1000°C at a heating rate of 10°C per minute. To avoid any 

potential hydration or carbonation of the free oxides in the powdered sample, nitrogen was 

used as the purge gas at flow rates of 60 mL/min for the sample purge and 40 mL/min for 

the balance purge.  

 The content of Ca(OH)2 – or any phase, for that matter, identified by TGA, such as 

Mg(OH)2, CaCO3, and MgCO3, etc. – is determined stoichiometrically. In the case of the 

hydroxide phases (Ca(OH)2, Mg(OH)2), the TGA mass loss is due to dehydration and the 

loss of H2O, while in the case of the carbonate phases (CaCO3, MgCO3, CaMg(CO3)2), the 

TGA mass loss is due to decarbonation and the loss of CO2. The molar masses of the 

various phases are summarized in Table 27, which are used to stoichiometrically determine 

the contents of the various phases.   

 

Table 27. Molar Masses of Identified Phases by TGA 

Phase Molar Mass (g/mol) 

Calcium Hydroxide Ca(OH)2 74.093 

Magnesium Hydroxide Mg(OH)2 58.320 

Water H2O 18.015 

Calcium Carbonate CaCO3  100.088 

Magnesium Carbonate MgCO3 84.314 

Dolomite CaMg(CO3)2 184.402 

Carbon Dioxide CO2 44.010 

Calcium Oxide CaO 56.078 

Magnesium Oxide MgO 40.304 
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 To confirm the decomposition temperatures for the phases to be examined by TGA, 

control samples of CaCO3 (Figure 21), MgCO3 (Figure 22), CaMg(CO3)2 (Figure 23), 

Ca(OH)2 (Figure 24), and Mg(OH)2 (Figure 25) were tested:  

 Halikia et al. (2001) found that, in a nitrogen atmosphere, CaCO3 decomposes over a 

range of temperatures from 635 to 865°C. The onset of decomposition of reagent grade 

CaCO3 begins around 560°C and be completed around 750°C with the peak at about 

730°C (Figure 21), indicating a CaCO3 content of 99.5%.  

 MgCO3 typically exists as a compound of MgCO3-Mg(OH)2-H2O, which decomposes in 

stages in a nitrogen atmosphere: any adsorbed water is lost around 100°C, chemically-

bound water (water of crystallization) is lost between 130 and 350°C, and the hydroxide 

and carbonate phases decompose between 305 and 520°C (Khan et al. 2001). Two 

thermal events were identified (Figure 22), indicating the loss of water of crystallization 

from 185 to 310°C (peak at about 235°C) and the decomposition of the hydroxide and 

carbonate phases from 310 to 470°C (peak at about 430°C). 

 In a nitrogen atmosphere at a heating rate of 10°C/minute, the decarbonation of dolomite 

occurs between 600 and 850°C (Gunasekaran and Anbalagan 2007). The 

decomposition appeared to start around 400°C, but the majority of the mass loss started 

at around 600°C, and finished at about 765°C with a peak at 740°C (Figure 21), 

indicating a dolomite content of 92.5%.  

 At a heating rate of 10°C/minute in a nitrogen atmosphere, the peak decomposition of 

Ca(OH)2 occurs around 400-410°C (Chen et al. 1993). The onset of decomposition of 

≥95% reagent grade Ca(OH)2 began around 295°C and completed around 435°C with 

the peak at about 418°C (Figure 24), indicating a Ca(OH)2 content of 90.4%, which is 

reasonable considering that some of the sample could have been carbonated.  

 The decomposition of Mg(OH)2 starts around 350°C in a nitrogen atmosphere (Halikia 

and Economacou 1993). Decomposition of ≥95% reagent grade Mg(OH)2 began around 

275°C and completed around 440°C with a peak at around 380°C (Figure 25), indicating 

a Mg(OH)2 content of 88.8%, which is reasonable considering that some of the sample 

could have been carbonated.   
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Figure 21. TGA mass loss for reagent grade calcium carbonate (CaCO3) heated to 1000°C 

in nitrogen at 10°C/minute. 

 

 
Figure 22. TGA mass loss for reagent grade magnesium carbonate (MgCO3) heated to 

1000°C in nitrogen at 10°C/minute. 
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Figure 23. TGA mass loss for dolomite (CaMg(CO3)2) heated to 1000°C in nitrogen at 

10°C/minute. 

 

 
Figure 24. TGA mass loss for ≥95% reagent grade calcium hydroxide (Ca(OH)2) heated to 

600°C in nitrogen at 10°C/minute. 
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Figure 25. TGA mass loss for ≥95% reagent grade magnesium hydroxide (Mg(OH)2) heated 

to 600°C in nitrogen at 10°C/minute. 

 

The TGA data is shown in Figure 26 to Figure 28 for the virgin SFS samples. As can 

be seen, there are two clear peaks at around 400°C and 650°C, which are the 

decomposition peaks for Ca(OH)2 and CaCO3, respectively. The peaks do not occur over as 

broad of a temperature range as the pure samples, but the peak decomposition temperature 

is similar. The derivative of the weight loss clearly provides that start and end of the mass 

loss for Ca(OH)2, so the mass loss for Ca(OH)2 was assumed to occur between 360 to 

420°C. For Virgin SFS 2 (EAF), if Ca(OH)2 was present, the amount of it undetectably small 

(Figure 27), which is reasonable considering that the EGN was only 0.06%, so it is assumed 

that no Ca(OH)2 is present. For Virgin SFS 3 (EAF/LMF), there are other peaks in addition to 

Ca(OH)2 and CaCO3 (Figure 28), which may correspond to the loss of free water around 

100°C and perhaps the loss of chemically bound water around 250°C. A summary of the 

resultant Ca(OH)2 and CaCO3 contents for the virgin SFS samples are reported in Table 28.  
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Figure 26. TGA mass loss for Virgin SFS 1 (BOF). The mass percent of Ca(OH)2 was 

determined from 360 to 420°C (peak at 397°C). The mass percent of CaCO3 was 

determined from 585 to 690°C (peak at 650°C). 

 

 
Figure 27. TGA mass loss for Virgin SFS 2 (EAF). It is assumed that no Ca(OH)2 is present. 

The mass percent of CaCO3 was determined from 585 to 690°C (peak at 675°C). 
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Figure 28. TGA mass loss for Virgin SFS 3 (EAF/LMF). The mass percent of Ca(OH)2 was 

determined from 372 to 423°C (peak at 398°C). The mass percent of CaCO3 was 

determined from 505 to 645°C (peak at 626°C). 

 

Table 28. Ca(OH)2 and CaCO3 Contents for the Virgin SFS as Determined by TGA 

Sample 
Ca(OH)2 
Content 

CaCO3 
Content 

Virgin SFS 1 (BOF) 1.34% 3.04% 

Virgin SFS 2 (EAF) 0.00% 2.57% 

Virgin SFS 3 (EAF/LMF) 0.20% 0.91% 

 

The refinement of the total free CaO content from ethylene glycol extraction was 

estimated based on the Ca(OH)2 content determined by TGA. Assuming that the ethylene 

glycol complexed with 100% of the free Ca(OH)2, the estimated total free CaO contents are 

shown in Table 29. 

 

Table 29. Total Estimated Free CaO Content Determined for the Virgin SFS 

Sample 
Ethylene Glycol 
Number (EGN) 

Ca(OH)2 
Content from 

TGA 

Stoichiometric 
CaO Content in 

Ca(OH)2 

Estimated Total 
Free CaO 
Content* 

Virgin SFS 1 
(BOF) 

4.40% 1.34% 1.01% 3.39% 

Virgin SFS 2 
(EAF) 

0.06% 0.00% 0.00% 0.06% 

Virgin SFS 3 
(EAF/LMF) 

0.51% 0.20% 0.11% 0.40% 

*Assuming that ethylene glycol complexed with 100% of the free Ca(OH)2 

 

 For the SFS FRAP samples (with binder removed), TGA was used to determine both 

the Ca(OH)2 and the dolomite (CaMg(CO3)2) contents. The dolomite content is important to 

know so that the amount of SFS in the FRAP sample can be estimated. All of the SFS FRAP 

samples only revealed the presence of dolomite. For the SFS present in the samples, the 
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contents of any hydroxide phases were likely too little to show as a peak in the TGA. 

However, any CaCO3 present in the SFS could have contributed to the dolomite peak, 

although the content was likely low enough to be relatively insignificant. As XRD had 

revealed, all three of the SFS FRAP samples contained quartz, which was likely from any 

virgin fine aggregate in the original HMA mixture. Assuming that the original virgin fine 

aggregate contained both silica (quartz) and carbonate mineral aggregates, the remaining 

material may not all be SFS. The thermal analyses of SFS FRAP 1 (Figure 29), SFS FRAP 

2 (Figure 30), and SFS FRAP 3 (Figure 31) suggested that the dolomite contents were 

54.2%, 59.0%, and 68.6%, respectively. These analyses grossly agree with the original 

construction information (Table 7, shown previously), which stated that all three SFS FRAP 

samples were comprised approximately of one-third SFS and two-thirds virgin aggregate.  

Tests were also conducted with the SFS removed from the SFS FRAP samples 

(Figure 32, Figure 33, and Figure 34). The findings are similar to the virgin SFS tests in that 

the phases present are Ca(OH)2 and CaCO3, the amounts of which are summarized in 

Table 30. A very small mass loss was also noted for the SFS from SFS FRAP 3 (Figure 34) 

at around 540°C, which corresponded to an unknown and unidentifiable phase.  

Considering that the peaks for dolomite and calcite overlap, the previously-

determined dolomite contents of 54.2%, 59.0%, and 68.6% for SFS FRAP 1, SFS FRAP 2, 

and SFS FRAP 3, respectively, can be adjusted based on the CaCO3 contents determined 

for the SFS from the SFS FRAP. Assuming the SFS contents of 33%, 33%, and 35% for 

SFS FRAP 1, SFS FRAP 2, and SFS FRAP 3, respectively, and using the CaCO3 contents 

from Table 30, the dolomite contents for the SFS FRAP sources were determined to be 

53.9%, 58.6%, and 67.8% for SFS FRAP 1, SFS FRAP 2, and SFS FRAP 3, respectively.  

 

 
Figure 29. TGA mass loss for SFS FRAP 1 (Curran). The mass percent of dolomite was 

determined from 595 to 775°C. The event around 125°C appears to be irrelevant, perhaps a 

slight error with the scale in the TGA. A second event around 260°C could possibly be due 

to the loss of water of crystallization; the temperature range of the event is too low for it to 

be Ca(OH)2. 
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Figure 30. TGA mass loss for SFS FRAP 2 (Geneva). The mass percent of dolomite was 

determined from 575 to 775°C. 

 

 
Figure 31. TGA mass loss for SFS FRAP 3 (Central Blacktop). The mass percent of 

dolomite was determined from 575 to 765°C. 
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Figure 32. TGA mass loss for the SFS from SFS FRAP 1 (Curran). The mass percent of 

Ca(OH)2 was determined from 340 to 405°C (peak at 376°C). The mass percent of CaCO3 

was determined from 555 to 650°C (peak at 625°C). 

 

 
Figure 33. TGA mass loss for the SFS from SFS FRAP 2 (Geneva). The mass percent of 

Ca(OH)2 was determined from 335 to 390°C (peak at 364°C). The mass percent of CaCO3 

was determined from 575 to 645°C (peak at 625°C). 
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Figure 34. TGA mass loss for the SFS from SFS FRAP 3 (Central Blacktop). The mass 

percent of Ca(OH)2 was determined from 355 to 415°C (peak at 387°C). The mass percent 

of CaCO3 was determined from 585 to 680°C (peak at 655°C). An additional peak was found 

to correspond to the decomposition of some unknown phase from 520 to 565°C (peak at 

538°C).  

 

Table 30. Ca(OH)2 and CaCO3 Contents for the Virgin SFS as Determined by TGA 

Sample 
Ca(OH)2 
Content 

CaCO3 
Content 

SFS from SFS FRAP 1 
(Curran) 

1.39% 0.98% 

SFS from SFS FRAP 2 
(Geneva) 

1.09% 1.05% 

SFS from SFS FRAP 3 
(Central Blacktop) 

1.13% 2.24% 

 

Based on the TGA data for the Ca(OH)2 contents and the EGN values for the SFS 

from the SFS FRAP samples, the total free CaO content of the SFS from the SFS FRAP 

was estimated, as shown in Table 31, assuming that the ethylene glycol complexed with 

100% of the free Ca(OH)2. Based on this assumption and knowing the initial SFS contents in 

the SFS FRAP, the total free CaO content of the SFS FRAP was estimated, as shown in 

Table 32. The estimated total free CaO contents are 1.0% for SFS FRAP 1 and SFS FRAP 

2 and 1.5% for SFS FRAP 3.  
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Table 31. Estimated Total Free CaO Contents for the SFS from the SFS FRAP Samples 

Sample 
Ethylene 

Glycol Number 
(EGN) 

Ca(OH)2 
Content from 

TGA 

Stoichiometric 
CaO Content 
in Ca(OH)2 

Estimated Total 
Free CaO 
Content* 

SFS from SFS 
FRAP 1 (Curran) 

3.99% 1.39% 1.05% 2.94% 

SFS from SFS 
FRAP 2 (Geneva) 

3.71% 1.09% 0.82% 2.89% 

SFS from SFS 
FRAP 3 (Central 
Blacktop) 

5.08% 1.13% 0.86% 4.22% 

*Assuming that ethylene glycol complexed with 100% of the free Ca(OH)2 

 

Table 32. Estimated Total Free CaO Contents for the SFS FRAP Samples 

Sample 
Estimated Total 

Free CaO Content 
in the SFS* 

Estimated SFS 
Content in the 

SFS FRAP 

Estimated Total Free 
CaO Content of the 

SFS FRAP 

SFS FRAP 1 
(Curran) 

2.94% 33% 1.0% 

SFS FRAP 2 
(Geneva) 

2.89% 33% 1.0% 

SFS FRAP 3 
(Central 
Blacktop) 

4.22% 35% 1.5% 

*Assuming that ethylene glycol complexed with 100% of the free Ca(OH)2 

 

3.6 AUTOCLAVE EXPANSION TEST 

An autoclave expansion test has been developed by the Edw. C. Levy Co. to quickly 

and effectively quantify the expansion potential of SFS aggregates. This test is particularly 

aggressive because it accelerates the hydration of both the free CaO and the free MgO 

compounds. The test specifies that a sample be subjected to 295±10 psi and 420±5°F for 

three hours. This test purposely follows the autoclave expansion test used to test for 

expansion in cement (ASTM C151). 

The mold assembly consists of a specimen mold affixed to a base plate. An 

extension collar is connected to the specimen mold, where a stem and surcharge are placed 

on top of a compacted sample (Figure 35). The specimen mold measured 3.1 inches (7.9 

cm) in diameter by 2.3 inches (5.8 cm) in height. The weight of the stem plus the surcharge 

was 3.22 pounds (1460 g). The stem was perforated to allow water to enter the sample. The 

compaction of the sample is similar to ASTM D698, where a 5.50-pound hammer is dropped 

from a height of 12 inches to compact the aggregate in three lifts with 25 blows per lift. The 

virgin aggregates were oven dried prior to compaction while the FRAP aggregates were air-

dried in a room at 23°C and 50% relative humidity.  
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(a) 

 
(b) 

Figure 35. Components (a) and completed assembly (b) of the autoclave expansion mold. 
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One consideration for this test is its effectiveness in hydrating free CaO that has 

some degree of carbonation in the sample. It has been found that carbonation of CaO 

particles is on the surface, creating a layer of CaCO3 around an unreacted CaO particle. 

Song and Kim (1990) found that this layer of CaCO3 delays further CaO hydration, which is 

dependent on the diffusion of water through the CaCO3 layer and the thickness of the 

CaCO3 layer. Diffusion is strongly influenced by temperature – by the Arrhenius equation, 

the diffusion coefficient is a function of exp(-1/T) – and is minimally affected by pressure, 

with slight decreases in the diffusion coefficient as the pressure increases (Mehrer 2007). 

Therefore, it is expected that the elevated temperatures of the autoclave will not deter 

diffusion of water through the layer of CaCO3 and to the free CaO particles.  

The test procedure stipulated that 600 mL of distilled water be added to the bottom of 

the autoclave, after which the mold with sample and surcharge added. The temperature and 

pressure in the autoclave was then brought up to 295±10 psi and 420±5°F, per the 

manufacturer’s instructions, and then held constant for three hours. The autoclave took 

about 45 minutes to reach the constant 295±10 psi and 420±5°F and around 1.5 hours to 

cool sufficiently. Once removed from the autoclave, the mold assembly was allowed to cool 

to room temperature prior to measuring the final height.  

The height of the sample was measured before (hi) and after (hf) autoclaving, always 

relative to a reference, which was also measured before (refi) and after (reff) the sample was 

autoclaved. A dial gauge attached to a stationary stand was used to determine the 

specimen height (Figure 36). The percent expansion (e) was then determined relative to the 

gauge length of the specimen (G, 2.3 inches), which is the height of the compacted 

aggregate in the mold. 

 

  
(       )  (       )

 
      (3)  
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Figure 36. Measurement of the height of autoclave expansion mold. 

 

Given that previous studies have shown that gradation can have a significant effect 

on the expansion results of SFS (Emery 1974, 1977), the gradation was controlled for each 

of the initial tests so that results from all samples could be directly compared. The maximum 

packing density gradation was selected for the study, as shown in Table 33, which was 

based on a 0.45-power curve. The virgin SFS aggregates were oven-dried and then sieved 

to match this specified gradation.  

 

Table 33. Target Dense Gradation for Autoclave Study 

Passing Retained on Mass Percent 

1/2 in (12.5mm) 3/8 in (9.5mm) 14% 

3/8 in (9.5mm) 1/4 in (6.35mm) 17% 

1/4 in (6.35mm) #4 (4.75mm) 10% 

#4 (4.75mm) #8 (2.36mm) 21% 

#8 (2.36mm) #16 (1.18mm) 14% 

#16 (1.18mm) #30 (0.6mm) 9% 

#30 (0.6mm) #50 (0.3mm) 8% 

#50 (0.3mm) #100 (0.15mm) 4% 

#100 (0.15mm) #200 (0.075mm) 3% 
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The samples with the matched dense gradation (Table 33) were run through the 

autoclave expansion test. As can be seen in Table 34, the expansion was related to the free 

CaO content: Virgin SFS 1 (BOF), which had the highest free CaO content, expanded the 

most, while Virgin SFS 2 (EAF), which had the lowest free CaO content, resulted in virtually 

no expansion. However, the results of this matched gradation study had significant 

variability and was not sufficiently repeatable.  

 

Table 34. Autoclave Expansion of Samples with Matched Gradation 

Sample Test No. Expansion 

Virgin SFS 1 
(BOF) 

1 11.77% 

2 8.26% 

Virgin SFS 2 
(EAF) 

1 -0.20% 

2 0.09% 

Virgin SFS 3 
(EAF/LMF) 

1 3.48% 

2 3.87% 

 

Given that there was some variation in the expansion results of the matched 

gradation, autoclave tests were conducted with a “monoparticle” size gradation. In these 

tests, only particles passing the 1/4 inch (6.35 mm) sieve and retained on the #4 (4.75 mm) 

sieve were used for the uncoated aggregate tests. For the tests with FRAP, only particles 

passing the 3/8 inch (9.5 mm) sieve and retained on the #4 (4.75 mm) sieve were used. 

Prior to the testing, all samples were washed to remove dust and finer particles before oven 

drying (virgin samples) or air drying (FRAP samples). Table 35 shows that the expansion 

results with the “monoparticle” size gradation were more repeatable than the previous tests. 

The expansions also related to the free CaO content – the samples with high free CaO 

content expanded the most. As validation of the autoclave results, dolomite aggregates 

underwent no expansion with this temperature and pressure.  

The “monoparticle” size gradation was also applied to the SFS FRAP samples. 

Initially the asphalt binder was removed from the FRAP using methylene chloride because 

of potential hazards of asphalt at elevated temperatures (420°F is near the asphalt ignition 

temperature, and numerous compounds in the asphalt may vaporize at temperatures below 

420°F). The expansions of the SFS FRAP (with binder removed) are shown in Table 35. 

The results indicate that SFS contained within the FRAP could have potentially deleterious 

expansive properties if water eventually makes it to the free CaO.  

Initial trial tests with SFS FRAP indicated that the FRAP did not compromise the safety of 

safety of the autoclave, so expansion tests were then carried out with the “monoparticle” 

size SFS FRAP samples, as shown in   
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Table 36*. The results clearly indicate that the asphalt coating plays a significant role in 

mitigating the potential expansion of the SFS in the FRAP. The expansion that is measured 

could be due to the phase transition of β-dicalcium silicate (larnite) to γ-dicalcium silicate 

(calcio-olivine)†, as evidenced by the powdery residue of some of the SFS particles noted 

after autoclaving (see Figure 37). In addition, the high temperature of the autoclave melted 

some of the asphalt, which appeared to mostly settle at the base of the mold (Figure 38). 

These two mechanisms likely resulted in the negative expansion (or contraction) that was 

noted for the SFS FRAP and dolomite FRAP samples. In general, the expansion was 

minimal for most SFS FRAP samples (Figure 39), resulting in net negative expansions in 

particular for SFS FRAP 2 (Geneva). Relative to dolomite FRAP, the SFS FRAP expansion (  

                                                
*
 One note on the performance of FRAP in the autoclave. The asphalt on the FRAP does not fully 
melt and expose the aggregate; perhaps this is because of the rapid temperature increase, high 
pressure, and steam. However, the asphalt on the FRAP in the part of the mold that is submerged in 
the water does melt and accumulate at the base of the mold. Therefore, all of the FRAP expansion 
tests were conducted by using a spacer to elevate the mold with the FRAP above the water in the 
bottom of the autoclave. This way, none of the asphalt melted to expose the aggregate. 
†
 This phase transition is discussed in further detail in Section 3.6.1. 
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Table 36) was similar for some cases and greater for others. The dolomite FRAP 

sources were the “clean” and “dirty” dolomite FRAP with 2.1% and 3.3% asphalt, 

respectively, from Brand et al. (2012). The other dolomite FRAP with 3.8% asphalt was from 

Brand et al. (2013).  

 

Table 35. Autoclave Expansion of Uncoated Samples with Monoparticle Size Gradation 

Sample 
Estimated 
Free CaO 
Content 

Test No. Expansion 
Average 

Expansion 

Virgin SFS 1 (BOF) 3.4% 
1 8.76% 

8.8% 
2 8.74% 

Virgin SFS 2 (EAF) 0.1% 

1 0.09% 

0.1% 2 0.07% 

3 0.13% 

Virgin SFS 3 
(EAF/LMF) 

0.4% 
1 0.85% 

0.8% 
2 0.83% 

Dolomite 0.0% 
1 -0.04% 

0.0% 
2 -0.02% 

SFS FRAP 1 
(Curran)* 

1.0% 
1 6.52% 

6.6% 
2 6.61% 

SFS FRAP 2 
(Geneva)* 

1.0% 
1 2.22% 

2.1% 
2 2.00% 

SFS FRAP 3 
(Central Blacktop)* 

1.5% 
1 4.20% 

4.2% 
2 4.28% 

*With asphalt binder removed 
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Table 36. Autoclave Expansion of FRAP Samples with Monoparticle Size Gradation 

Sample* Test No Expansion 
Average 

Expansion 

SFS FRAP 1 
(Curran)  

1 -0.83% 

-0.8% 
2 -0.39% 

3 -0.57% 

4 -1.26% 

SFS FRAP 2  
(Geneva)  

1 -1.74% 

-1.6% 
2 -1.30% 

3 -1.70% 

4 -1.78% 

SFS FRAP 3 
(Central Blacktop)  

1 0.43% 

-0.1% 

2 0.35% 

3 -0.52% 

4 0.04% 

5 -0.83% 

“Clean” Dolomite 
FRAP (2.1% 
Asphalt) 

1 -0.43% 

-0.7% 

2 -0.74% 

3 -0.65% 

4 -0.70% 

5 -1.04% 

“Dirty” Dolomite 
FRAP (3.3% 
Asphalt) 

1 -1.22% 

-1.0% 
2 -0.87% 

3 -1.00% 

4 -1.09% 

Dolomite FRAP 
(3.8% Asphalt) 

1 -1.57% 

-1.6% 
2 -1.26% 

3 -1.57% 

4 -1.87% 

*With asphalt binder coating 
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Figure 37. The SFS particles in the FRAP that disintegrated are circled, which is evidence of 

the β-dicalcium silicate (larnite) to γ-dicalcium silicate (calcio-olivine) phase transformation. 

 

 
Figure 38. The base of the mold after autoclaving contains a significant amount of 

agglomerated asphalt. 
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Figure 39. SFS FRAP 3 (Central Blacktop) exhibited little to no expansion after autoclaving. 

 

Table 37 compares the autoclave expansion of the various FRAP samples to the 

asphalt content and free CaO content of the FRAP. There is small correlation between the 

average expansion and the approximate free CaO content determined from ethylene glycol 

extraction. Therefore, it is possible that there is some expansion as a result of the hydration 

of the free CaO and MgO in the SFS FRAP, but the net expansion is offset by the decrease 

in volume as the asphalt melts and fills voids and as some of the SFS particles disintegrate 

because of phase transitions. SFS FRAP 3, which had the highest free CaO content of the 

three SFS FRAP sources, experienced the least amount of contraction, which suggests 

some expansion from the free CaO and/or MgO along with contraction because of the 

asphalt melting and the SFS particle disintegration. SFS FRAP 1 and SFS FRAP 2, which 

had similarly low free CaO contents, contracted about as much as the “dirty” dolomite FRAP, 

which indicates that, for these two sources, there was little to no expansion from the 

hydration of the free CaO and/or free MgO.  

 

Table 37. Comparison Between the Autoclave Expansion and Asphalt Content 

FRAP Type 
Average Autoclave 

Expansion 
Asphalt 
Content 

Total Estimated 
Free CaO Content 

SFS FRAP 1 (Curran) -0.8% 3.6% 1.0% 

SFS FRAP 2 (Geneva) -1.6% 3.8% 1.0% 

SFS FRAP 3 (Central Blacktop) -0.1% 3.9% 1.5% 

“Clean” Dolomite FRAP -0.7% 2.1% 0.0% 

“Dirty” Dolomite FRAP -1.0% 3.3% 0.0% 

Dolomite FRAP -1.6% 3.8% 0.0% 
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Figure 40 demonstrates that the presence of the asphalt coating on the SFS FRAP 

greatly hindered the expansion. The expansion with asphalt coated particles was less 

repeatable between replicate tests (i.e. higher standard deviation) compared with samples 

without the asphalt coating. The higher variability and lack of expansion between tests is 

because of the differences in the amount of asphalt that melted and filled voids and/or the 

amount of SFS particles that disintegrated. Without the asphalt coating, the SFS FRAP 

expansion was significantly greater, as the free CaO and free MgO were allowed to hydrate, 

although the magnitude of the expansion was not directly proportional to the estimated total 

free CaO content, which is likely related to the free MgO as well. Therefore, it is suspected 

that the asphalt coating prevents significant moisture ingress to react with the free CaO and 

MgO and cause expansion. 

SFS FRAP 2 was stockpiled in 2008 after milling (compared with SFS FRAP 1 and 3, 

which were stockpiled in 2012 after milling). The stockpile weathering may have reduced the 

expansion of the SFS in the FRAP; compare the expansion of SFS FRAP 2 in Figure 40 

with the dolomite FRAP with 3.8% asphalt. Because these two sources experienced similar 

expansions and had similar asphalt contents, it can be concluded that the SFS in SFS 

FRAP 2 perhaps did not significantly expand. It is possible that, while stockpiled, the 

accessible free CaO and/or free MgO hydrated; this would be the CaO and MgO near 

exposed particle faces (i.e., where there is a lack of asphalt coating). Then, during 

autoclaving, the remaining free CaO (which is about 1.0%) does not hydrate as it is perhaps 

hidden by the asphalt coating.  

 

 
Figure 40. Comparison of the autoclave expansion for the various FRAP sources with and 

without asphalt coating. Uncoated dolomite aggregates were found to experience zero 

expansion and is not included. The error bars indicate one standard deviation.  
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Comparing the autoclave expansion of the six SFS sources (uncoated) to the 

estimated total free CaO content, there is an increasing expansion amount with increasing 

free CaO content (Figure 41). There is insufficient data to conclude whether the trend is 

linearly or quadratically increasing. The MgO content should be considered, as the formation 

of Mg(OH)2 also causes expansion, but without a test available to estimate the free MgO 

content, it is not considered in Figure 41. Further testing is required over a range of SFS to 

further define the relationships in Figure 41 and to potentially include the free MgO content.  

 

 
Figure 41. Autoclave expansion for uncoated aggregates versus the free CaO content.  

 

3.6.1 Mineralogy and Ca(OH)2 Content After Autoclaving  

After autoclaving, one of the replicate samples of each of the virgin SFS was oven 

dried, crushed, sieved, and then tested to determine if the mineralogy and Ca(OH)2 contents 

had changed. The SFS FRAP samples were not tested because the presence of the 

dolomite would dominate the results of XRD and TGA. In general, the previously identified 

phases by XRD (such as larnite, wüstite, mayanite) were also identified after autoclaving. 

However, the newly identified phase in all three virgin SFS samples was a phase transition 

in the dicalcium silicate from the β (larnite) to the γ (calcio-olivine) form. Typically, β-

dicalcium silicate that is the form present in SFS, which is potentially metastable, although in 

SFS it is relatively nonreactive (Emery 1982). The γ polymorph is less dense than the β form 

(Taylor 1997), with a volume expansion from the β to the γ form on the order of 12%, based 

on the unit cell dimensions presented in Taylor (1997). The γ polymorph is the low 

temperature form of dicalcium silicate, transitioning from the β to the γ form at less than 

500°C, but the γ polymorph does not typically occur in portland cement because of the 

presence of stabilizing ions that prevent the β form from transforming (Taylor 1997). 

However, γ-dicalcium silicate has been identified by XRD in BOF slags (Gupta et al. 1994; 

Poh et al. 2006), and in a study of synthetic stainless steel slags, Kriskova et al. (2013) 

found that a slow cooling rate after heating can result in a phase transition from β- to γ-

dicalcium silicate. Chan et al. (1992) found that, in a powder, 10 μm was the critical particle 
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size below which the transformation from β- to γ-dicalcium silicate will not occur. The cooling 

of the SFS samples was slow after the autoclaving was finished and it is likely that the 

particle sizes of dicalcium silicate were larger than 10 μm, so a transition from β- to γ-

dicalcium silicate could occur, but it may have only happened upon cooling. The actual 

expansion from autoclaving will be a combination of the hydration of the free CaO and MgO 

and, potentially, the dicalcium silicate phase transformation, but if the β- to γ-dicalcium 

silicate phase transition resulted in the disintegration of a SFS particle, then the net 

expansion could have been lessened.  

By XRD, the mineralogy of virgin SFS 1 (BOF) after autoclaving was similar to the 

initial material, with the exception of the γ-dicalcium silicate phase (see Figure 42). Both free 

CaO and calcite (CaCO3) were identified, which suggests that: 1) not all of the free CaO 

reacted (which is to be expected because the reaction is topochemical, so the CaO at the 

interior of a particle does not necessarily react), and 2) the Ca(OH)2 that did form from 

autoclaving may have been carbonated, which is why CaCO3 was identified in the sample 

and not Ca(OH)2. The TGA analysis produced three distinct main decompositions: Mg(OH)2, 

Ca(OH)2, and CaCO3 (Figure 43). The amounts of Mg(OH)2 and Ca(OH)2 present after 

autoclaving were 3.2% and 4.6%, respectively.  

Given the very low free CaO content of virgin SFS 2 (EAF), it is likely that the 

expansion after autoclaving the EAF slag was partly caused by the phase transition of β- to 

γ-dicalcium silicate (Figure 44). From the TGA plot, evidence of Mg(OH)2, Ca(OH)2, and 

CaCO3 in the virgin SFS 2 (EAF) after autoclaving (Figure 45) is seen.  

Evidence of the β- to γ-dicalcium silicate transition was also noticed in virgin SFS 3 

(EAF/LMF), seen in Figure 46, but the expansion was primarily hydration of the free CaO 

and free MgO in the sample, as seen in the TGA results in Figure 47. In an attempt to 

deconvolute the peaks between 200 and 400°C, a second TGA test was conducted at 

3°C/minute to 500°C (Figure 48), but as can be seen, the peaks were the same. The TGA 

plot clearly displays the presence of CaCO3 (peak at 635°C in Figure 47). In addition, based 

on the pure samples of Ca(OH)2 and Mg(OH)2 tested previously, the peaks at 420°C and 

375°C were identified as Ca(OH)2 and Mg(OH)2, respectively. The peak at 245°C resembles 

the peak for the loss of water of crystallization from the MgCO3 sample, so it is assumed that 

this is what this peak indicates.  

A summary of the Mg(OH)2, Ca(OH)2, and CaCO3 contents of the virgin SFS 

samples after autoclaving is shown in Table 38. Compared with the contents before 

autoclaving (Figure 49), it is evident that the Mg(OH)2, Ca(OH)2, and CaCO3 contents all 

increase after autoclaving with the exception of the CaCO3 content for Virgin SFS 2 (EAF). 

Considering the initial EGN values – which were 4.4%, 0.1%, and 0.5% for Virgin SFS 1 

(BOF), 2 (EAF), and 3 (EAF/LMF), respectively, a significant portion (if not all of the free 

CaO) has hydrated, as the stoichiometric CaO contents from the Ca(OH)2 contents are 

3.5%, 0.2%, and 0.5% for Virgin SFS 1 (BOF), 2 (EAF), and 3 (EAF/LMF), respectively. 
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Figure 42. XRD scan and identified phases for Virgin SFS 1 (BOF), ≤150 μm particle size, 

after autoclaving. 
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Figure 43. TGA mass loss for Virgin SFS 1 (BOF) after autoclaving. The mass percentages 

of Mg(OH)2, Ca(OH)2, and CaCO3 were determined from 300 to 360°C (peak at 334°C), 365 

to 420°C (peak at 399°C), and 580 to 700°C (peak at 678°C), respectively. 
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Figure 44. XRD scan and identified phases for Virgin SFS 2 (EAF), ≤150 μm particle size, 

after autoclaving. 
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Figure 45. TGA mass loss for Virgin SFS 2 (EAF) after autoclaving. The mass percentages 

of Mg(OH)2, Ca(OH)2, and CaCO3 were determined from 300 to 340°C (peak at 321°C), 370 

to 415°C (peak at 388°C), and 560 to 655°C (peak at 628°C), respectively. 
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Figure 46. XRD scan and identified phases for Virgin SFS 3 (EAF/LMF), ≤150 μm particle 

size, after autoclaving. 
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Figure 47. TGA mass loss for Virgin SFS 3 (EAF/LMF) after autoclaving for a heating rate of 

10°C/minute. The mass percentages of Ca(OH)2 and CaCO3 were determined from 400 to 

445°C (peak at 420°C) and 570 to 660°C (peak at 635°C), respectively. The mass 

percentage of the Mg(OH)2 was determined from 365 to 400°C (peak at 375°C). The loss of 

water of crystallization was assumed to be from 180 to 350°C (peak at 245°C). 

 

 
Figure 48. TGA mass loss for Virgin SFS 3 (EAF/LMF) after autoclaving for a heating rate of 

3°C/minute. 
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Table 38. Post-Autoclave Hydroxide and Carbonate Contents Determined by TGA 

Sample Mg(OH)2 Content Ca(OH)2 Content CaCO3 Content 

Virgin SFS 1 (BOF) 3.23% 4.59% 6.80% 

Virgin SFS 2 (EAF) 0.27% 0.28% 0.47% 

Virgin SFS 3 (EAF/LMF) 0.43% 0.65% 1.33% 

 

 
Figure 49. Contents of Mg(OH)2, Ca(OH)2, and CaCO3 before and after autoclaving for the 

virgin SFS samples.  

 

One final consideration from this post-autoclave analysis is the backcalculation of the 

initial free MgO content based on the Mg(OH)2 content after autoclaving. As has been 

previously discussed, there is presently no proposed chemical method to accurately 

determine the free MgO content of SFS. Assuming that all of the available free MgO in the 

SFS sample actually hydrated, then the original free MgO content can be estimated, as 

shown in Table 39, by stoichiometrically converting from Mg(OH)2 to MgO. At the current 

temperature, pressure, and duration of the autoclaving, it is uncertain if all of the available 

free MgO did actually hydrate. Further testing and analysis is required for validation, but the 

concept provides a simple and effective method for the estimation of the free MgO content.    

 

Table 39. Estimated Free MgO Contents of the Virgin SFS Samples 

Sample Mg(OH)2 Content 
Estimated Original 
Free MgO Content* 

Virgin SFS 1 (BOF) 3.23% 2.2% 

Virgin SFS 2 (EAF) 0.27% 0.2% 

Virgin SFS 3 (EAF/LMF) 0.43% 0.3% 

*Assuming that all of the available free MgO hydrated from autoclaving 

 

  

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

V
ir

gi
n

 S
FS

 1
 (

B
O

F)
 (

B
ef

o
re

A
u

to
cl

av
e)

V
ir

gi
n

 S
FS

 1
 (

B
O

F)
 (

A
ft

e
r

A
u

to
cl

av
e)

V
ir

gi
n

 S
FS

 2
 (

EA
F)

 (
B

e
fo

re
A

u
to

cl
av

e)

V
ir

gi
n

 S
FS

 2
 (

EA
F)

 (
A

ft
er

A
u

to
cl

av
e)

V
ir

gi
n

 S
FS

 3
 (

EA
F/

LM
F)

(B
ef

o
re

 A
u

to
cl

av
e)

V
ir

gi
n

 S
FS

 3
 (

EA
F/

LM
F)

(A
ft

er
 A

u
to

cl
av

e)

P
h

as
e

 C
o

n
te

n
t 

(%
) 

Mg(OH)2

Ca(OH)2

CaCO3



106 

 

CHAPTER 4 CONCRETE MIX DESIGN 
 
The mix design for the SFS FRAP aggregate followed the same proportions as the 

previous study with dolomite FRAP aggregates (Brand et al. 2012; Brand and Roesler 

2014), which used the IDOT Portland Cement Concrete Technician Level III (IDOT PCC 

Level III) guide (IDOT 2009). This was done so that the concrete results with SFS FRAP 

could be compared with the known acceptable performance results with dolomite FRAP. A 

ternary cementitious blend, which contained 65% Type I portland cement, 25% Grade 100 

ground granulated blast furnace slag (GGBFS), and 10% Class C fly ash, was used. The 

total cementitious content was 630 lb/yd3 with a water-to-cementitious (w/cm) ratio of 0.37, 

which is within the IDOT limits of 565 to 705 lb/yd3 and 0.32 to 0.42, respectively (IDOT 

2012). The selected target air content was 6.5%, which is within the allowable range of 5 to 

8%, and the mortar factor was selected to be 0.85, which was the middle of the allowable 

range of 0.70 to 0.90 (IDOT 2012). The other parameters in the mix design formulation are 

included in Table 40. 

 

Table 40. Parameters for IDOT PCC Level III Mix Design 

Cement Factor 6.3 cwt/yd
3
 

Fine Aggregate Water 
Requirement 

5.3 gal/cwt 
cement 

Coarse Aggregate Water 
Requirement 

0.2 gal/cwt 
cement 

Total Water Requirement 
5.5 gal/cwt 

cement 

Water Reduction -20% 

Adjusted Total Water 
Requirement 

4.4 gal/cwt 
cement 

Air Requirement 6.5% 

Mortar Factor 0.85 

Coarse Aggregate Solids 0.60 

Volume Fraction Mortar 0.59 

 

The blended aggregate specific gravity (SGb) was determined based on the specific 

gravities of the SFS FRAP (SGSF) and virgin coarse aggregate (SGv) and the percentage 

replacements of the virgin coarse aggregate with SFS FRAP (PSF): 

 
    

   

   
    

 
     
   

 
(4)  

The blended specific gravity was then used to determine the total coarse aggregate content 

in the concrete mix design (Table 41). The percent replacement of virgin coarse aggregate 

by SFS FRAP was then done by weight. These properties were determined using SFS 

FRAP 3 (Central Blacktop), which was the only SFS FRAP source that was planned for use 

in multiple concrete property tests (the other SFS FRAP sources were tested for the effect 

on the concrete strength properties only). While the virgin coarse aggregate meets a CA11 

gradation, the blended gradations did not meet the CA11 requirements. The mix with 20% 
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SFS FRAP does meet the CA11 limits, but the mix with 50% SFS FRAP does not and rather 

meets the CA9 gradation limits. This failure to meet the CA11 gradation limits is because of 

the high amount of material passing the #4 sieve (4.75 mm) for SFS FRAP 3, which is nearly 

40% (see Table 12). Therefore, for the concrete study, the SFS FRAP 3 was sieved to 

reduce the amount of material passing the #4 sieve in order to ensure that only coarse SFS 

FRAP was being added in the concrete. After sieving, the material passing the #4 sieve was 

less than 10%.  

 

Table 41. Blended Aggregate Specific Gravity and Total Coarse Aggregate Contents 

SFS FRAP Amount 0%* 20% 50% 

Blended Specific 
Gravity 

2.72 2.72 2.71 

Total Coarse 
Aggregate (lb/yd

3
) 

1895.4 1892.4 1888.0 

SFS FRAP (lb/yd
3
) 0.0 378.5 944.0 

Virgin Coarse 
Aggregate (lb/yd

3
) 

1895.4 1513.9 944.0 

*From Brand et al. (2012) 

 

The final mix designs are shown in Table 42. Relative to the previous research 

(Brand et al. 2012; Brand and Roesler 2014), the mix design is the same except for the total 

fine aggregate content, which was 1129.6 lb/yd3 in the previous study. This discrepancy is 

caused by the slightly different specific gravities of the cementitious materials. For the 

majority of the concrete tests in this study, the control (0% SFS FRAP) mix results will be 

from the previous study, but in the tests that were not previously conducted, the concrete 

will be produced following the mix design in Table 42. Based on the previous study, the 

chemical admixture dosages were selected to be 1 fluid ounce per 100 pounds of cement 

for the air-entraining admixture (Grace Daravair 1400) and ranged from 4.0 to 4.5 fluid 

ounces per 100 pounds of cement for the mid-range water reducing admixture (Grace 

WRDA 82). The water reducing admixture dosage varied since the previous study (Brand et 

al. 2012; Brand and Roesler 2014) found that the concrete slump increased with increasing 

FRAP content, possibly because of the hydrophobicity of the asphalt on the FRAP. 

Therefore, the water reducing admixture dosage was decreased as the SFS FRAP content 

increased.  

Concrete mixtures with 100% virgin SFS were also created to compare some of the 

concrete properties with SFS FRAP. The highest potential for deleteriously expansive and 

the least potential for deleteriously expansive virgin SFS sources were selected for 

comparison, which were Virgin SFS 1 (BOF) and Virgin SFS 2 (EAF), respectively. As with 

the other mixtures, the volume of coarse aggregate was constant; the amount of virgin SFS 

added to the concrete varied, based on the specific gravity. The mix designs can be found in 

Table 42.  
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Table 42. Concrete Mix Design Proportions (in lb/yd3) 

  
0% SFS 
FRAP 

20% SFS 
FRAP 

50% SFS 
FRAP 

100% 
Virgin 
SFS 1 
(BOF) 

100% 
Virgin 
SFS 2 
(EAF) 

Cement 409.5 

GGBFS 157.5 

Fly Ash 63.0 

Total Coarse 
Aggregate (SSD) 

1895.4 1892.4 1888.0 2322.5 2581.0 

Virgin Coarse 
Aggregate (SSD) 

1895.4 378.5 944.0 0.0 0.0 

Coarse SFS 
FRAP (SSD) 

0.0 1513.9 944.0 0.0 0.0 

Virgin SFS 
Aggregate (SSD) 

0.0 0.0 0.0 2322.5 2581.0 

Virgin Fine 
Aggregate (SSD) 

1167.7 

Water 230.9 

Air-Entraining 
Admixture* 

1.0 

Mid-Range Water 
Reducer* 

4.5 4.25 4.0 4.5 4.5 

*In fl. oz. per 100 lbs cementitious 

 

The concrete was mixed with a laboratory pan mixer following ASTM C192 (2007). 

The concrete mix water was adjusted for the moisture content of each aggregate type. The 

mix water was dosed with the air-entraining admixture while the water reducing admixture 

was added slowly at the start of the final 3 minutes of mixing. The fresh concrete slump, unit 

weight, and air content were determined immediately after mixing, after which the concrete 

molds were filled, covered with plastic, and left to cure at laboratory temperature for 24±4 

hours. After the samples were demolded, they were either placed in a moist curing room or 

dealt with in accordance with the standard for a given testing procedure. 
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CHAPTER 5 CONCRETE TESTING RESULTS 
 

A number of tests were performed to determine the effect of the SFS FRAP on the 

fresh and hardened concrete properties. A summary of the tests performed, concrete ages 

of the tests, and corresponding test standard or method is shown in Table 43.  

 

Table 43. Concrete Tests Performed and Corresponding Standards or Methods 

Concrete Test Age(s) Tested (days) Standard or Method 

Fresh Concrete 

Slump -- ASTM C143 (2012) 

Air Content -- ASTM C231 (2010) 

Unit Weight -- ASTM C138 (2013) 

Hardened Concrete 

Compressive Strength  3, 7, 14, 28, and 90 AASHTO T22 (2007) 

Split Tensile Strength 3, 7, 14, 28, and 90 AASHTO T198 (2009) 

Flexural Strength 28 AASHTO T97 (2003) 

Modulus of Elasticity 28 ASTM C469 (2010) 

Fracture Properties 28 
Jenq and Shah (1985); RILEM TC89-

FMT (1990); Hillerborg (1985) 

Drying Shrinkage 1 to 150 AASHTO T160 (2009) 

Freeze/Thaw Durability 14 (Started) AASHTO T161 (2008) 

 

5.1 CONCRETE FRESH PROPERTIES 
Because a large number of samples were created, several pans of concrete needed 

to be mixed per mixture. Thus, the fresh properties of each concrete mix produced are 

summarized in Table 44. As can be seen, the unit weight of the concretes with 20% and 

50% SFS FRAP was often similar, which is expected because the specific gravity of the SFS 

FRAP and the virgin coarse aggregate were about the same. The air content and slump did 

not appear to be greatly affected by the SFS FRAP. As expected, the mixtures with virgin 

SFS had relatively high unit weights, because of the high specific gravity of the aggregate, 

and the slump and air content did not appear to be significantly influenced by the SFS.  
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Table 44. Concrete Fresh Properties for Each Mix Produced 

Concrete Mix 
SFS FRAP 
Content 

Slump (in) 
Air Content 

(%) 
Unit Weight 

(lb/ft
3
) 

Trial Compression 
20% 2-1/2 6.1 145.4 

50% 2 6.0 144.4 

Compressive and Split 
Tensile Strength 

20% 1-1/4 5.4 146.8 

50% 1-1/4 5.2 148.0 

Flexural Strength and 
Free Shrinkage 

20% 1 5.5 150.4 

50% 1 5.4 149.8 

Flexural Strength #2 
20% 2 7.5 145.4 

50% 2-1/2 7.0 145.0 

Fracture 
20% 2 6.6 146.8 

50% 2-1/2 6.8 147.0 

Freeze/Thaw and 
Modulus 

20% 1-1/2 5.6 149.4 

50% 1-1/4 5.5 150.2 

Freeze/Thaw, Split 
Tension, Compression 

100% BOF 1/2 5.5 164.8 

100% EAF 1 5.5 173.8 

Fracture and Free 
Shrinkage 

0% 3-1/4 6.8 140.0 

100% BOF 3 6.4 157.8 

100% EAF 1-1/4 6.3 168.2 

 

5.2 TRIAL STUDY   

An initial trial study was conducted to see the effects of the SFS FRAP on the 

compressive strength. This initial mix was created with the as-received SFS FRAP 3 

material, so it contained the significant amount of material passing the #4 sieve. The 

average of three tests is reported in Table 45 and Figure 50, also indicating the standard 

deviation and coefficient of variation (COV). The results with 20 and 50% SFS FRAP are 

compared with the previous study with virgin aggregates and dolomite FRAP (Brand et al. 

2012; Brand and Roesler 2014). As can be seen, the SFS FRAP results are similar to the 

dolomite FRAP results.  
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Table 45. Compressive Strength Results of the Trial Study Relative to Dolomite FRAP 

Mix Age 1 2 3 Average COV 

Control 
(0% 

FRAP)* 

7 3807 4221 4074 4034 5.2% 

14 5583 5201 5596 5460 4.1% 

28 6814 6776 6449 6680 3.0% 

20% SFS 
FRAP 

7 3597 3574 3569 3580 0.4% 

14 4307 4526 4680 4504 4.2% 

28 5073 5217 5335 5208 2.5% 

20% 
Dolomite 
FRAP* 

7 3519 3311 3193 3341 4.9% 

14 4656 4730 4483 4623 2.7% 

28 5357 5363 5455 5391 1.0% 

50% SFS 
FRAP 

7 2938 2919 2933 2930 0.3% 

14 3589 3649 3640 3626 0.9% 

28 4172 4107 4224 4168 1.4% 

50% 
Dolomite 
FRAP* 

7 3018 3050 2842 2970 3.8% 

14 3624 3448 3396 3489 3.4% 

28 3977 3885 4304 4055 5.4% 

*Results from Brand et al. (2012) 

 

 
Figure 50. Compressive strength of trial study cylinders compared with virgin aggregate and 

dolomite FRAP results. Note: error bars indicate one standard deviation. 
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5.3 COMPRESSIVE STRENGTH    

The compressive strength was evaluated at 3, 7, 14, 28, and 90 days with an 

average of three specimens. The specimens were tested for the peak load (P), which was 

converted to the compressive strength (σc), where D is the diameter of the specimen (4 

inches): 

 
   

 
 
 
  

 (5)  

As can be seen in Figure 51 and Table 46, the compressive strength of concrete with 

SFS FRAP is similar to concrete with dolomite FRAP. A similar trend is followed with 

decreasing compressive strength with increasing SFS FRAP content. Comparing concrete 

with virgin SFS and SFS FRAP (Figure 52), concrete with EAF slag aggregate can attain a 

higher compressive strength than dolomite aggregate, possibly because of the finer 

gradation, while the concrete with 100% BOF slag aggregate reached a compressive 

strength that was similar to the mix with 20% SFS FRAP. This behavior of concrete with 

virgin SFS aggregates agrees with the literature review (Table 4).  

A t-test for statistical significance (Table 47) revealed that at early ages (3, 7, and 14 

days), the compressive strengths of SFS FRAP were mostly statistically greater than the 

dolomite FRAP, but at later ages (28 and 90 days) the mixes were not statistically different. 

Therefore, the long-term compressive strength of concrete containing FRAP was not 

affected by the SFS in the FRAP. 
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Figure 51. Average compressive strength of concrete with SFS FRAP relative to the control 

(0% FRAP) and dolomite FRAP concrete mixes. Error bars indicate one standard deviation. 

 

 
Figure 52. Average compressive strength at 28 days comparing concretes with 100% 

dolomite (control), 100% EAF, 100% BOF, and 20% and 50% SFS FRAP as coarse 

aggregate. 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

3 7 14 28 90

C
o

m
p

re
ss

iv
e

 S
tr

e
n

gt
h

 (
p

si
) 

Concrete Age (days) 

Control 20% SFS FRAP 20% Dolomite FRAP 50% SFS FRAP 50% Dolomite FRAP

0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

m
p

re
ss

iv
e

 S
tr

e
n

gt
h

 (
p

si
) 

Control

100% EAF

100% BOF

20% SFS FRAP

50% SFS FRAP



114 

 

Table 46. Average Compressive Strength (psi) for SFS FRAP and Dolomite FRAP 

Concrete Mix 
Age 

(days) 

SFS FRAP Dolomite FRAP* 

1 2 3 Average  COV Average  COV 

0% FRAP 

3 -- -- -- -- -- 2968 3.0% 

7 -- -- -- -- -- 4034 5.2% 

14 -- -- -- -- -- 5460 4.1% 

28 -- -- -- -- -- 6680 3.0% 

90 -- -- -- -- -- 7473 4.4% 

20% FRAP 

3 3169 3032 3110 3104 2.2% 2480 1.3% 

7 3868 3992 3955 3938 1.6% 3341 4.9% 

14 4049 4318 4312 4226 3.6% 4623 2.7% 

28 5531 5196 5377 5368 3.1% 5391 1.0% 

90 6329 6158 5572 6020 6.6% 6087 5.9% 

50% FRAP 

3 2600 2584 2535 2573 1.3% 2141 3.3% 

7 3350 3283 3166 3266 2.9% 2970 3.8% 

14 3933 3942 3572 3816 5.5% 3489 3.4% 

28 4350 4221 4197 4256 1.9% 4055 5.4% 

90 4741 4815 4954 4837 2.2% 4725 1.3% 

100% Virgin 

SFS  1 (BOF) 
28 6147 5750 5568 5822 5.1% -- -- 

100% Virgin 

SFS  2 (EAF) 
28 7078 6968 6962 7003 0.9% -- -- 

*Source: Brand et al. (2012) 
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Table 47. Statistical Significance Testing for Concrete Compressive Strength with SFS 

FRAP and Dolomite FRAP 

Mix 
Age 

(days) 

Compressive Strength (psi) Pooled 
Standard 
Deviation 

t-test p-value 
1 2 3 Average 

Standard 
Deviation 

20% SFS 
FRAP 

3 3169 3032 3110 3104 68.62 -- -- -- 

20% D-
FRAP 

3 2456 2516 2466 2480 32.12 2870 14.27 0.00014 

20% SFS 
FRAP 

7 3868 3992 3955 3938 63.76 -- -- -- 

20% D-
FRAP 

7 3519 3311 3193 3341 164.90 15629 5.85 0.00425 

20% SFS 
FRAP 

14 4049 4318 4312 4226 153.55 -- -- -- 

20% D-
FRAP 

14 4656 4730 4483 4623 126.78 19826 -3.45 0.0260 

20% SFS 
FRAP 

28 5531 5196 5377 5368 167.77 -- -- -- 

20% D-
FRAP 

28 5357 5363 5455 5391 54.79 15574 -0.23 0.831 

20% SFS 
FRAP 

90 6329 6158 5572 6020 396.89 -- -- -- 

20% D-
FRAP 

90 5857 6502 5900 6087 360.63 143788 -0.22 0.840 

 

Mix 
Age 

(days) 

Compressive Strength (psi) Pooled 
Standard 
Deviation 

t-test p-value 
1 2 3 Average 

Standard 
Deviation 

50% SFS 
FRAP 

3 2600 2584 2535 2573 33.62 -- -- -- 

50% D-
FRAP 

3 2091 2110 2222 2141 70.58 3056 9.57 0.00067 

50% SFS 
FRAP 

7 3350 3283 3166 3266 93.10 -- -- -- 

50% D-
FRAP 

7 3018 3050 2842 2970 111.95 10600 3.53 0.0243 

50% SFS 
FRAP 

14 3933 3942 3572 3816 210.82 -- -- -- 

50% D-
FRAP 

14 3624 3448 3396 3489 119.59 29374 2.33 0.0801 

50% SFS 
FRAP 

28 4350 4221 4197 4256 82.20 -- -- -- 

50% D-
FRAP 

28 3977 3885 4304 4055 220.10 27600 1.48 0.214 

50% SFS 
FRAP 

90 4741 4815 4954 4837 107.82 -- -- -- 

50% D-
FRAP 

90 4795 4685 4696 4725 60.67 7653 1.56 0.193 

D-FRAP = Dolomite FRAP 
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5.3 SPLIT TENSILE STRENGTH 

The split tensile strength was evaluated at 3, 7, 14, 28, and 90 days with an average 

of three specimens. The peak load was measured and converted to the split tensile strength 

(σsp), where L is the length of the specimen (8 inches): 

 
    

  

   
 (6)  

The concrete split tensile strength also showed similar behavior between the SFS 

FRAP and dolomite FRAP concretes, as shown in Figure 53 and Table 48. A decreasing 

trend in the split tensile strength was observed with increasing SFS FRAP content. Concrete 

with virgin SFS had  lower split tensile strengths than the control mix with dolomite coarse 

aggregate (Figure 54).  

A t-test for statistical significance (Table 49) showed that the split tensile strengths 

were not statistically different between the SFS FRAP and dolomite FRAP mixes, with the 

exception of the early age (3 and 7 days) results for the 50% FRAP mixes. Images of the 

fracture surfaces can be seen in Figure 55 and Figure 56. These findings suggest that the 

presence of SFS in the FRAP does not affect the bonding between the asphalt on the FRAP 

and the cementitious matrix of the concrete. However, there is some evidence that the 

bonding is stronger between dolomite and the cementitious matrix compared with between 

the virgin SFS types (BOF and EAF) and the cementitious matrix, but these sources had 

different gradations, porosities, and particle angularities, which could also affect the 

strength.  

 

 
Figure 53. Average split tensile strength of concrete with SFS FRAP relative to the control 

(0% FRAP) and dolomite FRAP concrete mixes. Error bars indicate one standard deviation. 
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Figure 54. Average split tensile strength at 28 days comparing concretes with 100% 

dolomite (control), 100% EAF, 100% BOF, and 20% and 50% SFS FRAP as coarse 

aggregate. 
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Table 48. Average Split Tensile Strength (psi) for SFS FRAP and Dolomite FRAP 

Concrete Mix 
Age 

(days) 

SFS FRAP Dolomite FRAP* 

1 2 3 Average  COV Average  COV 

0% FRAP 
(Control) 

3 -- -- -- -- -- 454 12.7% 

7 -- -- -- -- -- 583 5.6% 

14 -- -- -- -- -- 640 8.7% 

28 -- -- -- -- -- 925 13.6% 

90 -- -- -- -- -- 829 8.7% 

20% FRAP 

3 321 434 385 380 14.9% 295 4.9% 

7 463 502 454 473 5.3% 499 9.4% 

14 526 493 424 481 10.8% 502 4.3% 

28 662 642 687 664 3.4% 679 3.2% 

90 644 707 627 659 6.4% 727 2.2% 

50% FRAP 

3 331 305 289 308 6.7% 260 3.8% 

7 498 418 443 453 9.0% 298 9.7% 

14 486 398 380 421 13.5% 432 10.0% 

28 504 478 440 474 6.8% 443 8.7% 

90 570 596 600 589 2.8% 517 18.4% 

100% Virgin 
SFS  1 (BOF) 

28 560 524 516 533 4.4% -- -- 

100% Virgin 

SFS  2 (EAF) 
28 594 723 580 632 12.5% -- -- 

*Source: Brand et al. (2012) 
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Table 49. Statistical Significance Testing for Concrete Split Tensile Strength with SFS FRAP 

and Dolomite FRAP 

Mix 
Age 

(days) 

Split Tensile Strength (psi) Pooled 
Standard 
Deviation 

t-test p-value 
1 2 3 Average 

Standard 
Deviation 

20% SFS 
FRAP 

3 321 434 385 380 56.7 -- -- -- 

20% D-
FRAP 

3 305 284 - 295 14.5 2210 1.99 0.140 

20% SFS 
FRAP 

7 463 502 454 473 25.1 -- -- -- 

20% D-
FRAP 

7 528 524 445 499 46.7 1406 -0.86 0.440 

20% SFS 
FRAP 

14 526 493 424 481 52.1 -- -- -- 

20% D-
FRAP 

14 526 497 483 502 21.5 1586 -0.64 0.555 

20% SFS 
FRAP 

28 662 642 687 664 22.3 -- -- -- 

20% D-
FRAP 

28 704 669 664 679 21.7 484 -0.87 0.434 

20% SFS 
FRAP 

90 644 707 627 659 42.3 -- -- -- 

20% D-
FRAP 

90 719 746 717 727 16.0 1023 -2.59 0.061 

 

Mix 
Age 

(days) 

Split Tensile Strength (psi) Pooled 
Standard 
Deviation 

t-test p-value 
1 2 3 Average 

Standard 
Deviation 

50% SFS 
FRAP 

3 331 305 289 308 20.8 -- -- -- 

50% D-
FRAP 

3 258 251 270 260 9.8 264 3.67 0.0214 

50% SFS 
FRAP 

7 498 418 443 453 41.0 -- -- -- 

50% D-
FRAP 

7 265 315 315 298 28.9 1255 5.35 0.00588 

50% SFS 
FRAP 

14 486 398 380 421 56.8 -- -- -- 

50% D-
FRAP 

14 462 450 382 432 43.0 2539 -0.25 0.812 

50% SFS 
FRAP 

28 504 478 440 474 32.3 -- -- -- 

50% D-
FRAP 

28 401 477 452 443 38.7 1270 1.05 0.352 

50% SFS 
FRAP 

90 570 596 600 589 16.5 -- -- -- 

50% D-
FRAP 

90 584 559 408 517 95.3 4680 1.29 0.267 

D-FRAP = Dolomite FRAP 
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(a) 20% SFS FRAP 

 
(b) 50% SFS FRAP 

Figure 55. Images of the split tension fracture surfaces for concrete with (a) 20% SFS FRAP 

and (b) 50% SFS FRAP. 
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(a) 100% Virgin SFS 1 (BOF) 

 
(b) 100% Virgin SFS 2 (EAF) 

Figure 56. Images of the split tension fracture surfaces for concrete with 100% virgin SFS: 

(a) BOF and (b) EAF. 
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5.5 FLEXURAL STRENGTH 

The flexural strength was evaluated at an age of 28 days with the average of three 

replicate specimens. The beams had a nominal 6 inches square cross section and were 21 

inches long. The tested span length was 18 inches, and the strength was calculated for 

third-point (four-point) loading, where the loading was applied at one-third the span length (6 

inches). The flexural strength, or modulus of rupture (MOR), is measured from the peak load 

(P), the span length (l, 18 inches), the beam width (b), and the beam depth (d). After the 

beam fractured, the cross-sectional area of the fracture surface was measured to obtain the 

dimensions of b and d. 

 
    

  

   
 (7)  

The flexural strength results are shown in Table 50. The flexural strength for 

concrete with SFS FRAP was higher than the control and concrete with dolomite FRAP. 

Images of the fracture surfaces for the concrete with SFS FRAP can be seen in Figure 57. A 

large agglomerated FRAP particle appeared to influence the failure crack path in one of the 

flexural strength beams with 50% SFS FRAP, as shown in Figure 58.  

Because the flexural strengths were unexpectedly high, a second batch of concrete 

was mixed, the results of which are shown in Table 50. As can be seen in Table 50 and 

Figure 59, there is a trend of decreasing flexural strength with increasing FRAP content for 

SFS FRAP compared with dolomite FRAP. The concrete with SFS FRAP was found to 

result in higher flexural strengths than concrete with dolomite FRAP, which can possibly be 

the result of the SFS in the FRAP and/or the finer gradation of the SFS FRAP compared 

with tested dolomite FRAP. Statistically, with 95% confidence, a t-test revealed that the 

flexural strength of concrete with SFS FRAP was higher than concrete with dolomite FRAP 

(Table 51). Images of the fracture surfaces for the concrete with SFS FRAP (Test 2) can be 

seen in Figure 60.  

 

Table 50. 28-Day Flexural Strengths (psi) for Concrete with SFS FRAP and Dolomite FRAP 

Concrete Mix 
SFS FRAP Dolomite FRAP* 

1 2 3 Average COV Average  COV 

0% FRAP 
(Control) 

-- -- -- -- -- 857 12.2% 

20% FRAP 
(Test 1) 

1044 920 986 983 6.3% 735 2.0% 

50% FRAP 
(Test 1) 

849 919 883 884 3.9% 577 1.3% 

20% FRAP 
(Test 2) 

778 812 788 793 2.2% 735 2.0% 

50% FRAP 
(Test 2) 

762 770 771 768 0.6% 577 1.3% 

*Source: Brand et al. (2012) 
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(a) 20% SFS FRAP 

 
(b) 50% SFS FRAP 

Figure 57. Images of the flexural fracture surfaces for concrete (Test 1) with (a) 20% SFS 

FRAP and (b) 50% SFS FRAP. 
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Figure 58. An image of one of the flexural strength beams where a large agglomerated 

FRAP particle appeared to affect the path of the crack. 

 

 
Figure 59. A plot of average 28-day flexural strength versus percent FRAP content for 

dolomite FRAP and SFS FRAP. 
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Table 51. Statistical Significance Testing for Concrete Flexural Strength with SFS FRAP and 

Dolomite FRAP 

Mix 

Flexural Strength (psi) Pooled 
Standard 
Deviation 

t-test p-value 
1 2 3 Average 

Standard 
Deviation 

20% SFS 
FRAP 

778 812 788 793 17.3 -- -- -- 

20% D- 
FRAP 

722 751 732 735 14.9 261 4.39 1.18E-02 

50% SFS 
FRAP 

762 770 771 768 4.9 -- -- -- 

50% D- 
FRAP 

578 570 584 577 7.3 38 37.65 2.97E-06 

D-FRAP = Dolomite FRAP 

 

 
(a) 20% SFS FRAP 

 
(b) 50% SFS FRAP 

Figure 60. Images of the flexural fracture surfaces for concrete (Test 2) with (a) 20% SFS 

FRAP and (b) 50% SFS FRAP. 
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5.6 STRENGTH RATIOS 

The typical ratio for split tensile strength to compressive strength ranges from 0.08 to 

0.14, and the ratio for flexural strength to compressive strength ranges from 0.11 to 0.23 

(Mindess et al. 2003). The ratios for SFS FRAP and dolomite FRAP can be found in Table 

52. The strength ratios are within the expected typical ranges. The split tensile to 

compressive strength ratio is similar for the concretes with 0, 20, and 50% SFS FRAP or 

dolomite FRAP, which is around 0.11 to 0.12 at later ages; the ratio for concrete with virgin 

SFS is lower than the control concrete and concretes with FRAP, but is still within the typical 

range at 0.09. The flexural to compressive strength ratio is also within the expected range, 

although the ratio is slightly greater for the concretes with SFS FRAP because of the higher 

measured flexural strength.  

 

Table 52. Strength Ratios for Concrete with SFS and Dolomite FRAP 

Concrete Mix 
Age 

(days) 

SFS FRAP Dolomite FRAP* 

Split Tensile to 
Compressive 

Strength 

Flexural to 
Compressive 

Strength 

Split Tensile to 
Compressive 

Strength 

Flexural to 
Compressive 

Strength 

0% FRAP 
(Control) 

3 -- -- 0.15 -- 

7 -- -- 0.14 -- 

14 -- -- 0.12 -- 

28 -- -- 0.14 0.13 

90 -- -- 0.11 -- 

20% FRAP 

3 0.12 -- 0.12 -- 

7 0.12 -- 0.15 -- 

14 0.11 -- 0.11 -- 

28 0.12 0.15 0.13 0.14 

90 0.11 -- 0.12 -- 

50% FRAP 

3 0.12 -- 0.12 -- 

7 0.14 -- 0.10 -- 

14 0.11 -- 0.12 -- 

28 0.11 0.18 0.11 0.14 

90 0.12 -- 0.11 -- 

100% Virgin 
SFS  1 (BOF) 

28 0.09 -- -- -- 

100% Virgin 

SFS  2 (EAF) 
28 0.09 -- -- -- 

*Source: Brand et al. (2012) 

 
5.7 MODULUS OF ELASTICITY 

The modulus of elasticity (MOE) was evaluated at an age of 28 days with the 

average of three replicate specimens (see Figure 61). The chord modulus of elasticity (E) 

was calculated as follows, where S2 is the stress at approximately 40% of the compressive 

strength, S1 is the stress at longitudinal strain ε1, and ε2 is the longitudinal strain at stress S2. 

According to ASTM C469 (2010), ε1 should be selected as 0.000050. 
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 (8)  

The cylinder was loaded at least twice to confirm the data and to make sure that the strain 

gauges were recording acceptable data (these first two measurements were not used in the 

eventual MOE calculation). The cylinder was then loaded at least three more times to obtain 

the actual data from which the modulus of elasticity would be calculated. Once the cylinder 

was completely tested for modulus of elasticity data, it was loaded until failure to obtain the 

compressive strength.  

 

 
Figure 61. Configuration to determine the modulus of elasticity. 

 

The average MOE values for concrete with SFS FRAP and dolomite FRAP are 

shown in Table 53 and Figure 62. As expected, the MOE for concrete with FRAP was lower 

than the control mix with dolomite. The concrete with SFS FRAP had a greater MOE than 

concrete with dolomite FRAP, because of the stiffer modulus of the SFS in the FRAP; the 

modulus with SFS FRAP was statistically greater than the dolomite FRAP with 95% 

confidence (Table 54). The compressive strength of the MOE cylinders is shown in Table 

55, which indicates that the compressive strength of these cylinders was slightly greater 

than the strength of the cylinders tested in Table 46.  
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Table 53. Average Modulus of Elasticity (in psi) for Concrete with SFS and Dolomite FRAP 

Concrete 
Mix 

Sample 
SFS FRAP Dolomite FRAP* 

Test 1 Test 2 Test 3 Average Average COV Average COV 

0% FRAP 
(Control) 

-- -- -- -- -- -- 
 

6.44E+06 4.6% 

20% 
FRAP 

1 5.82E+06 5.79E+06 5.58E+06 5.73E+06 

6.02E+06 4.4% 5.42E+06 3.3% 2 6.23E+06 6.24E+06 6.26E+06 6.25E+06 

3 6.06E+06 6.15E+06 6.02E+06 6.08E+06 

50% 
FRAP 

1 4.97E+06 4.94E+06 4.74E+06 4.88E+06 

5.48E+06 9.5% 4.48E+06 3.1% 2 5.68E+06 5.82E+06 5.91E+06 5.80E+06 

3 5.90E+06 5.82E+06 5.56E+06 5.76E+06 

*Source: Brand et al. (2012) 

 

 
Figure 62. Modulus of elasticity for concrete with SFS and dolomite FRAP. 
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Table 54. Statistical Significance Testing for Concrete Modulus of Elasticity with SFS FRAP 

and Dolomite FRAP 

Mix 

Modulus of Elasticity (psi) Pooled 
Standard 
Deviation 

t-test p-value 
1 2 3 Average 

Standard 
Deviation 

20% 
SFS 
FRAP 

5.73E+06 6.25E+06 6.08E+06 6.02E+06 2.64E+05 
   

20% D-
FRAP 

5.62E+06 5.39E+06 5.27E+06 5.42E+06 1.78E+05 5.07E+10 3.22 0.032 

50% 
SFS 
FRAP 

4.88E+06 5.80E+06 5.76E+06 5.48E+06 5.18E+05 
   

50% D- 
FRAP 

4.32E+06 4.58E+06 4.54E+06 4.48E+06 1.38E+05 1.44E+11 3.24 0.032 

D-FRAP = Dolomite FRAP 

 

Table 55. Compressive Strength of the MOE Specimens 

Mix Sample Peak Load (lb) 
Compressive 
Strength (psi) 

20% SFS 
FRAP 

1 179735 6357 

2 176670 6248 

3 180335 6378 

50% SFS 
FRAP 

1 147030 5200 

2 140515 4970 

3 141715 5012 

 

The MOE can be estimated based on the concrete unit weight (wc) and the 

compressive strength (σc) (Mindess et al. 2003; ACI318 2008): 

          
     

    (9)  

The predicted MOE is shown in Table 56 relative to the measured MOE for both SFS and 

dolomite FRAP. For all concretes, the MOE is underpredicted by the equation. By 

minimizing the error between the actual and predicted moduli, the MOE prediction equation 

was updated as follows (see Figure 63): 

             
      

     (10)  
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Table 56. Predicted versus Measured Modulus of Elasticity 

Concrete 
Mix 

Sample 
Compressive 
Strength (psi) 

Unit Weight 
(lb/ft

3
) 

Predicted 
MOE (psi) 
(ACI 318) 

Predicted 
MOE (psi) 
(Updated) 

Measured 
MOE (psi) 

0% FRAP 
(Control)* 

1 7006 145.2 4.83E+06 6.21E+06 6.66E+06 

2 6417 145.2 4.63E+06 5.99E+06 6.55E+06 

3 4727 145.2 3.97E+06 5.28E+06 6.10E+06 

20% SFS 
FRAP 

1 6357 149.4 4.80E+06 6.22E+06 5.73E+06 

2 6248 149.4 4.76E+06 6.17E+06 6.25E+06 

3 6378 149.4 4.81E+06 6.23E+06 6.08E+06 

50% SFS 
FRAP 

1 5200 150.2 4.38E+06 5.76E+06 4.88E+06 

2 4970 150.2 4.28E+06 5.66E+06 5.80E+06 

3 5012 150.2 4.30E+06 5.68E+06 5.76E+06 

20% 
Dolomite 
FRAP* 

1 3638 143.2 3.41E+06 4.64E+06 5.62E+06 

2 5419 143.2 4.16E+06 5.47E+06 5.39E+06 

3 5326 143.2 4.13E+06 5.43E+06 5.27E+06 

35% 
Dolomite 
FRAP* 

1 4349 140.8 3.64E+06 4.88E+06 4.48E+06 

2 4000 140.8 3.49E+06 4.71E+06 4.66E+06 

3 3835 140.8 3.41E+06 4.63E+06 4.76E+06 

50% 
Dolomite 
FRAP* 

1 4226 140.2 3.56E+06 4.79E+06 4.32E+06 

2 4112 140.2 3.51E+06 4.74E+06 4.58E+06 

3 4342 140.2 3.61E+06 4.84E+06 4.54E+06 

*Source: Brand et al. (2012) 

 

 
Figure 63. Predicted versus measured modulus of elasticity. 
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5.8 FRACTURE PROPERTIES  

The fracture properties of the concrete was determined at an age of 28 days using 

the single edge notched beam (SENB) geometry following the two-parameter fracture model 

(Jenq and Shah 1985; RILEM TC89-FMT 1990) and the work of fracture method (Hillerborg 

1985). Five concrete mixtures were tested: 0% SFS FRAP (control), 20% SFS FRAP, 50% 

SFS FRAP, 100% Virgin SFS 1 (BOF), and 100% Virgin SFS 2 (EAF). Five replicates were 

tested for the 20% and 50% SFS FRAP mixes and four replicates were tested for the 0% 

SFS FRAP (control), 100% Virgin SFS 1 (BOF), and 100% Virgin SFS 2 (EAF) mixes. The 

dimensions of the SENB specimens were 150 by 80 by 700 mm, and the specimens were 

tested with a span length of 600 mm. A notch depth of 50 mm was cut into the beam at the 

mid-span (350 mm). The specimen was loaded at a constant crack mouth opening 

displacement (CMOD) rate. The beam was monotonically loaded until peak and then 

unloaded after dropping to 95% of the peak load in order to obtain data for the unloading 

compliance. Subsequently, the beam was reloaded until the specimen failed. 

The SENB test estimates the initial stiffness (Ei) of the concrete based on the 

loading-unloading (load-CMOD) curve as follows, where a0 is the notch depth, S is the span 

length (600 mm), Ci is the initial compliance from the load-CMOD curve (20% to 50% of the 

peak load), b is the beam depth, t is the beam width, and H is the knife-edge thickness: 
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The unloading compliance (Cu) is similarly calculated from the unloading curve from 20% to 

80% of the peak load and then used to compute the unloading stiffness (Eu): 
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 (14)  

The critical effective crack length (ac) at the peak load is then calculated by setting initial and 

unloading stiffnesses equal and solving for critical crack depth: 
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The critical stress intensity factor (   ) is then determined, where Pmax is the maximum peak 

load and W0 is the self-weight of the beam: 
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The second fracture parameter, the critical crack tip opening displacement (CTODc), is also 

calculated from the critical crack depth as follows, where        : 

      
      (    )

    
(        

   

 
) [(   )  (           (    ))(   

 )]    

(18)  
The initial fracture energy (   ), or strain energy release rate, is computed from the 

previously-derived stiffness (E): 

 

    
(   

 ) 

 
 (19)  

The total fracture energy (GF) is computed using the method by Hillerborg (1985), which 

normalizes the total work of fracture to the fracture area; A is the area under the load-CMOD 

curve (without the loop from unloading) and δf is the displacement at failure with zero load. 

 

   
  

   
   

(    ) 
 (20)  

The fracture properties were determined at an age of 28 days for the mixes with 20% 

(Figure 64) and 50% (Figure 65) SFS FRAP as well as 0% SFS FRAP (Figure 66), 100% 

Virgin SFS 1 (BOF) (Figure 67), and 100% Virgin SFS 2 (EAF) (Figure 68). A total of four or 

five replicate beams were tested, the results of which are shown in Table 57. Relative to the 

control concrete with virgin aggregates, the other mixes with recycled aggregates all 

appeared to have an increased critical stress intensity factor and initial and total fracture 

energies.  

A t-test with 95% confidence was used to compare the fracture properties of the 

concretes with SFS FRAP and virgin SFS to the concrete with virgin aggregates (Table 58). 

The t-test indicated that the concrete with 100% Virgin SFS 2 (EAF) resulted in fracture 

properties that were statistically greater than the control, which agrees with other studies. 

Papayianni and Anastasiou (2010a) found a 9% increase in the total fracture energy when 

coarse EAF slag aggregates were used, and Montgomery and Wang (1992) found an 

increase in KIc on the order of 10% when coarse instant-chilled SFS was added to concrete. 

The concrete with 100% Virgin SFS 1 (BOF) had statistically similar properties to the control, 

except for the modulus and KIc. For concrete with SFS FRAP, the fracture properties were 

statistically similar to the control, except for CTODc and GIc for the 50% SFS FRAP mix. This 

finding agrees with previous studies that have shown the fracture properties of concrete with 

FRAP to be statistically similar to virgin aggregate concrete (Brand et al. 2012, 2013, 2014; 

Brand and Roesler 2014).  

Comparing the 20% and 50% SFS FRAP mixes, the peak load and modulus 

decreased at higher SFS FRAP contents, as expected, but the KIc, CTODc, GIc, and GF were 

similar between the two SFS FRAP contents. All of the fracture properties were not 

statistically different with 95% confidence (Table 59).  

The fracture parameters for the various concretes are compared with the results from 

other studies in Table 60. As can be seen, the values for concrete with SFS FRAP are 

similar to concrete with dolomite FRAP, despite the differences in concrete age. However, 

the total fracture energy appears to be slightly greater for concrete with SFS FRAP relative 
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to dolomite FRAP, potentially because of the presence of the SFS and gradation 

differences. 

 

 
Figure 64. Load-CMOD curves for the replicate beams with 20% SFS FRAP. 

 

 
Figure 65. Load-CMOD curves for the replicate beams with 50% SFS FRAP. 
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Figure 66. Load-CMOD curves for the replicate beams with 0% SFS FRAP. 

 

 
Figure 67. Load-CMOD curves for the replicate beams with 100% Virgin SFS 1 (BOF). 
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Figure 68. Load-CMOD curves for the replicate beams with 100% Virgin SFS 2 (EAF). 
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Table 57. Fracture Parameters at 28 Days 

Mix 
Beam 
No. 

Peak 
Load, 
Pmax 
(kN) 

Modulus, 
E (MPa) 

Critical 
Stress 

Intensity 
Factor, KIc 
(MPa-m

1/2
) 

Critical Crack 
Tip Opening 

Displacement 
CTODc (mm) 

Initial 
Fracture 

Energy, GIc 
(N/m) 

Total 
Fracture 
Energy, 
GF (N/m) 

0% 
SFS 
FRAP 

1 3.51 25.4 0.873 0.0117 30.04 92.4 

2 3.89 28.3 1.086 0.0159 41.62 104.4 

3 4.22 26.2 1.113 0.0180 47.19 122.8 

4 3.26 26.8 0.928 0.0142 32.16 86.8 

Average 3.72 26.7 1.000 0.0149 37.75 101.6 

COV 11.3% 4.7% 11.8% 17.8% 21.3% 15.7% 

20% 
SFS 
FRAP 

1 4.22 25.1 1.075 0.0179 46.04 124.2 

2 3.97 26.1 1.163 0.0222 51.79 135.0 

3 3.59 25.8 0.966 0.0147 36.12 113.3 

4 4.67 31.6 1.334 0.0190 56.24 152.7 

5 3.61 25.3 0.985 0.0152 38.30 102.2 

Average 4.01 26.8 1.104 0.0178 45.70 125.5 

COV 11.3% 10.2% 13.6% 17.1% 18.8% 15.5% 

50% 
SFS 
FRAP 

1 3.80 23.1 1.096 0.0209 51.98 143.2 

2 3.85 26.0 1.218 0.0261 57.15 146.8 

3 4.30 27.7 1.305 0.0216 61.51 111.8 

4 3.36 20.9 0.973 0.0190 45.38 108.8 

Average 3.83 24.4 1.148 0.0219 54.00 127.6 

COV 10.0% 12.4% 12.6% 13.7% 12.9% 15.8% 

100% 
Virgin 
SFS 1 
(BOF) 

1 4.10 30.7 1.248 0.0218 50.67 117.0 

2 3.63 29.3 1.124 0.0200 43.07 128.0 

3 4.27 31.8 1.204 0.0178 45.59 114.6 

4 4.66 34.3 1.245 0.0158 45.16 114.3 

Average 4.16 31.5 1.205 0.0189 46.12 118.5 

COV 10.2% 6.6% 4.8% 13.9% 7.0% 5.5% 

100% 
Virgin 
SFS 2 
(EAF) 

1 4.84 36.5 1.427 0.0199 55.82 134.6 

2 4.45 36.7 1.447 0.0228 56.96 124.5 

3 4.51 37.4 1.375 0.0193 50.58 121.7 

4 4.56 35.3 1.305 0.0167 48.32 115.1 

Average 4.59 36.5 1.388 0.0197 52.92 124.0 

COV 3.8% 2.4% 4.5% 12.8% 7.8% 6.5% 
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Table 58. t-test Results for the Mixes with SFS FRAP and Virgin SFS Relative to the Control 

  20% SFS FRAP 50% SFS FRAP 
100% Virgin SFS 1 

(BOF) 
100% Virgin SFS 2 

(EAF) 

Fracture 
Parameter 

p-
value 

Statistically 
Significant 

p-
value 

Statistically 
Significant 

p-
value 

Statistically 
Significant 

p-value 
Statistically 
Significant 

Pmax 0.359 No 0.727 No 0.190 No 0.009 Yes 

E 0.940 No 0.214 No 0.007 Yes 1.4E-05 Yes 

CTODc 0.179 No 0.013 Yes 0.080 No 4.1E-02 Yes 

KIc 0.294 No 0.164 No 0.020 Yes 0.001 Yes 

GIc 0.200 No 0.022 Yes 0.102 No 0.015 Yes 

GF 0.089 No 0.089 No 0.098 No 0.046 Yes 

 

Table 59. Results of the t-test between the Mixes with 20% and 50% SFS FRAP 

Fracture 
Parameter 

p-value 
Statistically 
Significant 

Pmax 0.537 No 

E 0.253 No 

KIc 0.674 No 

CTODc 0.084 No 

GIc 0.162 No 

GF 0.874 No 
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Table 60. Comparison of Fracture Parameters for Concrete with FRAP Aggregates 

Mix 
Age 

(days) 

Peak 
Load, 

Pmax (kN) 

Critical Stress 
Intensity 

Factor, KIc 
(MPa-m

1/2
) 

Critical Crack 
Tip Opening 

Displacement 
CTODc (mm) 

Initial 
Fracture 
Energy, 

GIc (N/m) 

Total 
Fracture 
Energy, 
GF (N/m) 

0% SFS 
FRAP 

28 3.72 1.000 0.0149 37.8 101.6 

20% SFS 
FRAP 

28 4.01 1.104 0.0178 45.7 125.5 

50% SFS 
FRAP 

28 3.83 1.148 0.0219 54.0 127.6 

100% BOF 
SFS 

28 4.16 1.205 0.0189 46.1 118.5 

100% EAF 
SFS 

28 4.59 1.388 0.0197 52.9 124.0 

Concrete 
Slab Mix (0% 

FRAP)* 
39 3.57 1.146 0.0191 44.3 73.8 

Concrete 
Slab Mix 

(45% FRAP)* 
39 2.38 0.898 0.0205 36.6 75.7 

Laboratory 
Supplement 

Mix (45% 
FRAP)* 

39 3.85 1.043 0.0173 47.1 119.4 

Tollway I-88 
Top Lift (0% 

FRAP)* 
140 4.93 1.349 0.0148 49.2 72.5 

Tollway I-88 
Bottom Lift 

(21% FRAP)* 
140 4.61 1.311 0.0163 50.3 79.4 

0% FRAP** 156 4.39 1.267 0.0157 44.7 100.4 

20% FRAP** 156 4.16 1.140 0.0159 43.7 86.3 

35% FRAP** 104 3.53 0.974 0.0137 35.8 106.5 

50% FRAP** 104 3.54 1.054 0.0193 47.7 113.5 

Source: *Brand et al. (2013); **Brand et al. (2012) 

 

5.9 DRYING SHRINKAGE  

The drying shrinkage was measured for specimens that had cured for 24 hours in 

order to examine the early age shrinkage behavior of the concrete. Three replicates were 

tested over the span of 150 days. Five concrete mixtures were tested: 0% SFS FRAP 

(control), 20% SFS FRAP, 50% SFS FRAP, 100% Virgin SFS 1 (BOF), and 100% Virgin 

SFS 2 (EAF). The virgin SFS aggregates were tested in order to evaluate how the SFS in 

the FRAP could affect the shrinkage. The specimens were also weighed in order to 

determine the mass loss as shrinkage progressed. All shrinkage specimens were kept in an 

environmentally controlled room with the relative humidity around 50% and the temperature 

at approximately 23°C. The free shrinkage prism specimens measured 3 inches in width and 

depth by 11.25 inches in length. Two gauge studs were inserted into the mold at the ends of 

the concrete specimens, resulting in a gauge length of 10 inches. The shrinkage was 

measured relative to a constant length reference bar. The shrinkage (S, in mircostrain) is 
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calculated as follows, where Lc is the length of the concrete specimen, Lref is the length of 

the reference bar, and GL is the gauge length (10 inches): 

 

 (       )  
       

  
(    ) (21)  

The percent weight lost (WL) was computed as follows, where W0 is the initial weight and Wi 

is the weight after i days: 

 

   
     
  

(     ) (22)  

Figure 69 shows the shrinkage behavior of each concrete mixture during the first 14 

days. The shrinkage trends were relatively unclear until about 7 days. As can be seen at 

later ages as well (Figure 70), the general shrinkage trend is that the control (0% SFS 

FRAP) concrete experiences the least amount of shrinkage, followed by the concrete with 

20% SFS FRAP, then 50% SFS FRAP, and finally the virgin SFS concrete mixes experience 

the highest amount of shrinkage. A t-test for statistical significance (Table 61) indicated that 

the shrinkage of the mix with 20% SFS FRAP was not statistically different from the 

shrinkage of the control mix (0% SFS FRAP) while, only at later ages, the shrinkage of the 

mixes with 50% SFS FRAP, 100% EAF, and 100% BOF was statistically greater than the 

shrinkage of the control mix (0% SFS FRAP).  

It was observed in previous studies of concrete with virgin SFS aggregate that the 

shrinkage was greater than (Coppola et al. 2010), equal to (Netinger et al. 2011), or less 

than (Madej et al. 1996; Al-Negheimish et al. 1997; Liu et al. 2011) concrete with natural 

aggregates. Brand et al. (2012) found that the shrinkage of 28-day-cured concrete with 20, 

35, and 50% dolomite FRAP was statistically similar to the shrinkage of the control concrete 

without FRAP (except for the 35% FRAP mixture at 56 and 90 days). The trends suggest 

that the SFS present in the FRAP may have an effect on shrinkage behavior of the concrete, 

but the gradation of each aggregate source was different so this may be a significant 

reason. The asphalt content of the FRAP may also be important, considering that the 

asphalt content (3.9%) of the SFS FRAP was higher than the asphalt content (2.1%) of the 

dolomite FRAP in the study by Brand et al. (2012).      

 The mass loss caused by shrinkage (Figure 71) indicated that that the control mix 

(0% SFS FRAP) experienced the greatest amount of mass loss and that the mixtures with 

SFS FRAP exhibited the lowest mass loss. This is not consistent with the findings by Brand 

et al. (2012), who found that concrete with higher FRAP contents (35 and 50%) exhibited 

greater mass loss.  
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Figure 69. Free drying shrinkage up to 14 days of concrete with 0, 20, and 50% SFS FRAP 

and 100% virgin SFS (EAF and BOF).  

 

 
Figure 70. Free drying shrinkage up to 150 days of concrete with 0, 20, and 50% SFS FRAP 

and 100% virgin SFS (EAF and BOF).  
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Table 61. Statistical Significance of Concrete Shrinkage Relative to the Control 

Mix 
Concrete 

Age 
(days) 

Average 
Shrinkage 

Strain 
(μstrain)  

Pooled 
Standard 
Deviation 
(μstrain) 

t-test p-value 
Statistically 

Different from 
Control? 

20% 
SFS 

FRAP 

2 -73 183.33 1.206 0.294 No 

4 -170 66.67 2.500 0.067 No 

7 -260 216.67 2.219 0.091 No 

14 -380 1066.67 0.875 0.431 No 

28 -460 266.67 1.750 0.155 No 

56 -510 1066.67 2.000 0.116 No 

100 -547 2966.67 1.499 0.208 No 

150 -583 233.33 3.207 0.0327 Yes 

50% 
SFS 

FRAP 

2 -100 166.67 1.265 0.275 No 

4 -190 116.67 4.158 0.014 Yes 

7 -270 66.67 5.500 0.005 Yes 

14 -413 683.33 2.655 0.057 No 

28 -490 416.67 3.200 0.033 Yes 

56 -560 1016.67 3.969 0.017 Yes 

100 -603 2866.67 2.821 0.048 Yes 

150 -620 266.67 5.750 0.0045 Yes 

100% 
EAF 

2 -120 1516.67 1.048 0.354 No 

4 -173 183.33 1.809 0.145 No 

7 -320 666.67 4.111 0.015 Yes 

14 -443 1483.33 2.756 0.051 No 

28 -517 1733.33 2.353 0.078 No 

56 -570 2416.67 2.824 0.048 Yes 

100 -630 3900.00 2.942 0.042 Yes 

150 -687 1333.33 4.808 0.0086 Yes 

100% 
BOF 

2 -90 316.67 0.229 0.830 No 

4 -207 883.33 2.198 0.093 No 

7 -297 533.33 3.359 0.028 Yes 

14 -437 1633.33 2.424 0.072 Yes 

28 -537 2033.33 2.716 0.053 Yes 

56 -577 2283.33 3.076 0.037 Yes 

100 -657 4966.67 3.070 0.037 Yes 

150 -727 1333.33 6.149 0.0035 Yes 

 

 



142 

 

 
Figure 71. Mass loss caused by shrinkage up to 150 days for concrete with 0, 20, and 50% 

SFS FRAP and 100% virgin SFS (EAF and BOF). 

 

5.10 FREEZE/THAW DURABILITY 

The freeze/thaw testing was performed on four mixes: 20% SFS FRAP, 50% SFS 

FRAP, 100% Virgin SFS 1 (BOF), and 100% Virgin SFS 2 (EAF). The virgin SFS 

aggregates were tested in order to evaluate if and how the SFS in the FRAP could affect the 

freeze-thaw durability, particularly SFS with high expansion potential. Three replicates of 

each mix were tested. The temperature cycled between 40°F (4°C) and 0°F (-18°C) with the 

samples covered with 1/32 to 1/8 inch (1 to 3 mm) of water. At intervals of 36 freeze/thaw 

cycles or less, the fundamental transverse frequency and specimen weight were measured. 

The test was completed once 300 freeze/thaw cycles were achieved. The relative dynamic 

modulus of elasticity (Pi) after i number of freeze/thaw cycles is computed as follows, where 

n0 is the initial fundamental transverse frequency and ni is the fundamental transverse 

frequency after i number of freeze/thaw cycles: 

 
   (

  
  
)
 

(    ) (23)  

The durability factor (DF) is then considered the Pi at the end of the freeze/thaw cycling. The 

weight lost after i number of freeze/thaw cycles can be computed using the same equation 

used for shrinkage (Equation 22), except that i instead refers to the i number of freeze/thaw 

cycles.  

Initially, in the first 50 cycles, the freeze/thaw cycles were slower than the ASTM 

C666 specification, with about 2 cycles occurring per day. This resulted in an increase in the 

fundamental transverse frequency within the first 36 cycles, as the concrete prisms 

essentially gained strength from 14 days (when the test started) to 28 days (when the 

prisms were tested after 36 cycles), as can be seen in Figure 72. Because of a refrigerant 

leak, the freeze/thaw chamber frequently required a refrigerant recharge, but after each 

recharge, the chamber was able to complete at most about 4 cycles per day. Towards the 
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end of the freeze/thaw cycling (after about 270 freeze/thaw cycles), the machine was only 

able to perform about one cycle per day.   

 The durability factor did not significantly decrease for any of the mixtures after 300 

cycles, as indicated in Table 62 and Table 63. Only the mixture with 50% SFS FRAP 

decreased significantly, while the other mixtures (20% SFS FRAP, 100% BOF, 100% EAF) 

were relatively constant throughout all freeze/thaw cycles.  

Considering that there was an increase in the durability factor from 0 to 36 cycles, 

the durability factor could also be considered as a reduction from 36 cycles, essentially 

considering the overall net change in the durability factor from 36 to 300 cycles. As can be 

seen in Table 63, the durability factor from 36 to 300 cycles was reduced to 80% for the mix 

with 50% SFS FRAP while the other mixtures (20% SFS FRAP, 100% BOF, 100% EAF) 

remained at a factor of around 100%. Thus, it can be seen that all mixtures exhibited 

suitable freeze/thaw durability after 300 cycles, considering that a typical acceptable 

freeze/thaw durability factor is 70% (Marek 1991).  

The weight loss throughout the freeze/thaw cycling is shown in Figure 73, Table 64, 

and Table 65. The mixes with SFS FRAP did not experience as much weight loss as the two 

virgin SFS mixes. The mix with 100% BOF, which had a high free CaO content, experienced 

the most weight loss as a result of surface scaling, possibly from the hydration expansion of 

the free CaO.    

The prisms were tested after an additional 36 freeze/thaw cycles in order to 

determine the net change from 36 to 336 cycles (i.e. considering the “zero” point to be after 

36 cycles). As can be seen in Figure 74, there was a significant decrease in the durability 

factors for the mixes with SFS FRAP, particularly for 50% SFS FRAP which decreased to 

53%. After 336 cycles, as expected, all mixes experienced additional mass loss (Figure 

75).The mixes with virgin SFS did not appear to be greatly affected by the additional 

freeze/thaw cycles.  

It is concluded that the asphalt coating and not the SFS content was the main factor 

in the freeze/thaw durability of the concrete with SFS FRAP. Obratil et al. (2009) tested an 

unspecified type of SFS with an unknown free CaO content and found a durability factor of 

87% after 300 freeze/thaw cycles. Papayianni and Anastasiou (2010a) tested the 

freeze/thaw scaling resistance in a sodium chloride solution of concrete with 100% low-

expansion EAF and found relatively low mass losses when supplementary cementitious 

materials were not used. Brand et al. (2012) also found that higher FRAP contents reduce 

the freeze/thaw durability of concrete, although the dolomite FRAP tested in that study had a 

durability factor of 86% for 50% dolomite FRAP after 300 freeze/thaw cycles. For a mix with 

100% coarse RAP and 50% fine RAP, Berry et al. (2013) found a durability factor of 94% 

after 300 freeze/thaw cycles.  

In studies of HMA, freeze/thaw cycling has been found to strip the asphalt from an 

aggregate surface (Williams and Miknis 1998), effectively altering the chemical composition 

of the asphalt adsorbed at the asphalt-aggregate interface (S.-C. Huang et al. 2005), which 

reduces the HMA modulus (McCann and Sebaaly 2003; Ameri et al. 2013). This suggests 

that the freeze/thaw cycling of concrete with FRAP may separate the asphalt from the 

aggregate or the cement interfaces, thus reducing the overall dynamic modulus of the 

concrete.   
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Figure 72. Freeze/thaw durability of mixtures with SFS FRAP and virgin SFS from 0 to 300 

cycles.  

 

Table 62. Durability Factors for Each Specimen from 0 to 300 Cycles 

Mix 
Prism 
No. 

Durability Factor (After X Cycles) (%) 

0 36 71 91 136 174 216 252 268 300 

20% SFS 
FRAP 

1 100 124 124 124 124 124 124 124 128 128 

2 100 116 116 116 116 116 116 116 116 116 

3 100 116 116 116 116 116 116 116 120 116 

50% SFS 
FRAP 

1 100 119 115 115 115 112 108 105 101 97 

2 100 114 114 114 114 107 107 101 90 85 

3 100 116 116 116 113 113 109 106 99 99 

100% 
BOF 

1 100 120 120 120 120 120 120 120 123 120 

2 100 120 120 120 120 120 120 124 120 120 

3 100 123 123 123 123 123 123 123 122 123 

100% 
EAF 

1 100 124 124 124 124 124 128 128 131 124 

2 100 125 125 125 125 125 125 128 125 125 

3 100 126 126 126 126 126 129 129 122 122 

 

Table 63. Average Durability Factor after 300 Freeze/Thaw Cycles 

Mixture 
Average Durability 
Factor from 0 to 

300 Cycles 

Average Durability 
Factor from 36 to 

300 Cycles 

Average Durability 
Factor from 36 to 

336 Cycles 

20% SFS FRAP 120% 101% 88% 

50% SFS FRAP 93% 80% 53% 

100% BOF 121% 100% 100% 

100% EAF 124% 99% 101% 
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Figure 73. Weight loss during freeze/thaw cycling (0 to 300 cycles) for mixtures with SFS 

FRAP and virgin SFS.  

 

Table 64. Mass Loss for Each Specimen from 0 to 300 Cycles 

Mix 
Prism 
No. 

Mass Loss (After X Cycles) (%) 

0 36 71 91 136 174 216 252 268 300 

20% SFS 
FRAP 

1 0.00 0.09 0.06 -0.04 -0.21 -0.35 -0.50 -0.61 -0.71 -0.82 

2 0.00 0.04 0.04 0.03 -0.06 -0.08 -0.18 -0.30 -0.48 -0.74 

3 0.00 0.16 0.10 0.06 0.03 0.02 -0.02 -0.11 -0.12 -0.16 

50% SFS 
FRAP 

1 0.00 0.04 0.09 0.08 0.02 0.02 -0.01 -0.29 -0.35 -0.18 

2 0.00 0.10 0.09 0.08 0.04 -0.05 -0.14 -0.23 -0.46 -0.65 

3 0.00 0.07 0.09 0.11 0.08 0.08 0.07 0.02 0.01 -0.08 

100% BOF 

1 0.00 0.06 -0.10 -0.25 -0.53 -0.72 -0.93 -1.13 -1.36 -1.59 

2 0.00 0.08 -0.08 -0.20 -0.56 -0.77 -1.03 -1.23 -1.46 -1.70 

3 0.00 0.10 -0.08 -0.17 -0.45 -0.70 -0.88 -1.11 -1.29 -1.44 

100% EAF 

1 0.00 0.07 -0.04 -0.09 -0.24 -0.33 -0.41 -0.54 -0.58 -0.71 

2 0.00 0.06 -0.03 -0.13 -0.20 -0.29 -0.42 -0.59 -0.63 -0.76 

3 0.00 0.08 0.02 -0.08 -0.20 -0.36 -0.50 -0.60 -0.66 -0.75 

 

Table 65. Average Weight Loss after 300 Freeze/Thaw Cycles 

Mixture 
Average Weight 
Loss from 0 to 

300 Cycles 

Average Weight 
Loss from 36 to 

300 Cycles 

Average Weight 
Loss from 36 to 

336 Cycles 

20% SFS FRAP -0.58% -0.67% -1.13% 

50% SFS FRAP -0.30% -0.38% -1.12% 

100% BOF -1.58% -1.66% -2.17% 

100% EAF -0.74% -0.81% -1.22% 
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Figure 74. Freeze/thaw durability of mixtures with SFS FRAP and virgin SFS from 36 to 336 

cycles. 

 

 
Figure 75. Weight loss during freeze/thaw cycling (0 to 336 cycles) for mixtures with SFS 

FRAP and virgin SFS. 

 

Comparing the SFS FRAP freeze/thaw durability with the dolomite FRAP results 

(Table 66), the SFS FRAP performed similarly to dolomite FRAP, particularly at lower FRAP 

contents. The 50% SFS FRAP mix durability factor was lower than the 50% dolomite FRAP 

mix, but the durability was still suitable. The SFS FRAP had a higher asphalt content than 

the dolomite FRAP, which may have been the primary cause of the reduction in durability 

factor.  
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Table 66. Net Freeze/Thaw Durability after 300 Cycles Comparing Dolomite and SFS FRAP 

Mix 
Durability Factor Mass Loss 

Dolomite FRAP* SFS FRAP Dolomite FRAP* SFS FRAP 

0% FRAP 101% -- -1.79% -- 

20% FRAP 102% 101% -1.79% -0.67% 

35% FRAP 90% -- -2.72% -- 

50% FRAP 86% 80% -2.58% -0.38% 

100% BOF -- 100% -- -1.66% 

100% EAF -- 99% -- -0.81% 

*Source: Brand et al. (2012) 

 

Images of the concrete specimens after 300 freeze/thaw cycles can be found in 

Figure 76, Figure 77, Figure 78, and Figure 79. The mixes SFS FRAP showed scaling 

particularly over the FRAP particles, but there also appeared to be pop-outs over the virgin 

aggregates in the concrete. The mixes with virgin SFS showed significant surface scaling, 

particularly the concrete with 100% BOF, which is to be expected considering that this mix 

had the greatest amount of mass loss. In one of the prisms with 100% EAF, an EAF slag 

aggregate near the surface appears to have undergone corrosion, as evidenced by the rust-

colored stains on the surface of the concrete, as shown in Figure 78.  
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Prism 1 

 

 
Prism 2 

 

 
Prism 3 

 

Figure 76. Images of the concrete prisms with 20% SFS FRAP after 300 freeze/thaw cycles. 
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Prism 1 

 

 
Prism 2 

 

 
Prism 3 

 

Figure 77. Images of the concrete prisms with 50% SFS FRAP after 300 freeze/thaw cycles. 
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Prism 1 

 

 
Evidence of corrosion in and EAF slag particle in Prism 1 

 

 
Prism 2 

 

 
Prism 3 

 

Figure 78. Images of the concrete prisms with 100% EAF after 300 freeze/thaw cycles. 
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Prism 1 

 

 
Prism 2 

 

 
Prism 3 

 

Figure 79. Images of the concrete prisms with 100% BOF after 300 freeze/thaw cycles. 
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5.11 MATCHED GRADATION STUDY 

The three SFS FRAP sources all had similar asphalt and SFS aggregate contents 

but different stockpiled ages. To best compare the three SFS FRAP sources and  see if an 

older stockpiled (i.e. more oxidized) FRAP will improve the concrete strength, each source 

was sieved to match a single gradation (Table 67). This gradation was selected because it 

was similar to the base gradations of each SFS FRAP source.  

 

Table 67. Matched Gradation to Compare the SFS FRAP Sources 

Sieve Size 
Cumulative Percent 

Passing 

Percent 

Retained 

5/8 inch 16mm 100.0% 0.0% 

1/2 inch 12.5mm 99.5% 0.5% 

3/8 inch 9.5mm 80.0% 19.5% 

1/4 inch 6.35mm 40.0% 40.0% 

#4 4.75mm 10.0% 30.0% 

#8 2.36mm 0.0% 10.0% 

 

Because of material availability, a different fine aggregate (natural sand) source was 

used (SSD Specific Gravity = 2.57, Absorption = 1.57%). Also, in order to avoid any 

potential chemical interactions, no chemical admixtures were used. The concrete mix design 

used for this matched gradation study is shown in Table 68. The water-to-cement ratio was 

0.40. The coarse aggregate consisted entirely of SFS FRAP. The mixing procedure 

consisted of mixing the SFS FRAP and fine aggregate with about one-half of the water for 

30 seconds, after which the cement and remaining water were added. The concrete was 

mixed for 3 minutes, rested for 3 minutes, and mixed a final 2 minutes.  

 

Table 68. Concrete Mix Design for the Matched Gradation SFS FRAP Study 

Constituent Content (lb/yd
3
) 

Cement 600.0 

SFS FRAP (SSD) 1806.4 

Fine Aggregate (SSD) 1151.6 

Water 239.2 

 

The concrete fresh properties are shown in Table 69. As expected, the air content 

was relatively low because of the absence of an air-entrainment admixture. In addition, 

without a water reducing admixture, the slump was relatively low as well. The unit weights 

were similar between all three mixtures because the SFS FRAP sources all had similar 

specific gravities.  
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Table 69. Concrete Fresh Properties for the Matched Gradation Study 

SFS FRAP Type Slump (inch) Air Content (%) Unit Weight (lb/ft
3
) 

SFS FRAP 1 (Curran) 1/4 2.8 153.0 

SFS FRAP 2 (Geneva) 1/4 2.5 150.8 

SFS FRAP 3 (Central 
Blacktop) 

1/4 3.0 151.6 

 

Because 100% SFS FRAP was used as the coarse aggregate, the compressive 

strength was significantly less than at lower SFS FRAP contents (Figure 80). At all ages, 

SFS FRAP 2 was statistically different (with 95% confidence) from both SFS FRAP 1 and 3, 

while SFS FRAP 1 and 3 were statistically similar. The coefficient of variation for the 

compressive strengths was similar to the mixes with lower SFS FRAP contents.  

 

 
Figure 80. Compressive strength of the 100% SFS FRAP matched gradation study. 

 

Similarly, the split tensile strengths were likewise significantly lower relative to mixes 

with lower SFS FRAP contents (Figure 81). At all ages, all three SFS FRAP mixes were 

statistically similar with 95% confidence, which was likely an artifact of the high standard 

deviations. The coefficient of variation was found to be consistently high (upwards of 20%) 

at all ages, relative to the values for mixes with lower SFS FRAP contents. This could be a 

result of using 100% SFS FRAP in the concrete mixture.  
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Figure 81. Split tensile strength of the 100% SFS FRAP matched gradation study. 

 

The results of this matched gradation study suggest that concrete made with similar 

SFS FRAP sources (similar in asphalt content and SFS content) can have statistically 

similar properties. The magnitude of the findings does not represent the realistic strength 

performance of paving mixes, which would have a lower SFS FRAP content. Standard 

deviations were very high also because of the 100% SFS FRAP content.  
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RECOMMENDATIONS 
 

Tests performed on the three SFS FRAP samples indicate that the SFS aggregates 

can retain residual free CaO despite years in service in an asphalt pavement and even after 

some weathering in stockpiles. The asphalt coating on the SFS aggregates prevents or 

hinders the complete hydration of the free CaO and/or free MgO in the SFS aggregates. 

Autoclave expansion testing, with and without the asphalt coating, suggested that the 

asphalt coating did hinder, but did not necessarily prevent, the CaO and MgO hydration 

reactions. This finding agrees with past studies that have found that SFS FRAP may not 

expand significantly (Senior et al. 1994; Deniz et al. 2010; Dayioglu et al. 2014), at least 

relative to the expansion of virgin SFS. Concrete strength, shrinkage, and fracture testing 

with up to 50% coarse SFS FRAP indicated suitable performance relative to conventional 

concrete with virgin aggregates and similar dolomite FRAP.  

The SFS FRAP expansion appears to be dependent on the free CaO, free MgO, and 

asphalt contents, so prior to utilizing SFS FRAP as an aggregate in concrete, it is 

recommended that the material be tested to determine the residual free CaO, the free MgO, 

and  asphalt contents, and autoclave expansion with the coated and uncoated SFS FRAP. It 

is recommended that SFS FRAP be potentially utilized as a coarse aggregate in concrete 

pavements only if the extracted SFS has a limited autoclave expansion and low free CaO 

and free MgO contents. Additional testing is required to establish these limits. A number of 

previous field studies in the United States have shown deleterious expansion of SFS 

concrete, likely with high free CaO and free MgO contents, but a number of projects in 

Europe have clearly demonstrated that SFS can be successfully utilized as an aggregate in 

concrete with appropriate material characterization and processing. Based on the limited 

SFS FRAP sources tested in this study, definitive limits on the free CaO and free MgO 

content, asphalt content, and permissible autoclave expansion cannot be established 

without a larger sample size of SFS sources.  

From the concrete strength, durability, and fracture tests, it is clear that virgin SFS 

and SFS FRAP performs acceptably in the short-term pending expansion testing. 

Temporary roads, barriers, and concrete fill, for example, could all be suitable applications 

for the immediate utilization of SFS FRAP without further testing.  

Additionally, SFS aggregates may be tested for new asphalt pavement surfaces in 

order to ensure that SFS aggregates could be used as SFS FRAP aggregates in concrete or 

other stabilized or unstabilized layers in the future. Ideally, SFS aggregate for this 

application would contain low free CaO and free MgO contents and be minimally expansive. 

Weathering the (virgin) SFS aggregates – such as by keeping the stockpile continuously 

moist and periodically turning the pile – could assist in mitigating the expansive 

characteristics of the SFS aggregates prior to use in asphalt pavements. Weathering has 

been shown to be effective for SFS aggregates use in concrete (Manso et al. 2004, 2006, 

2011). Also, there may be other acceptable processes to reduce the free CaO and/or free 

MgO contents in the SFS aggregates, which would require further investigation. 
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SUMMARY AND CONCLUSIONS 
 

Steel furnace slag (SFS), an industrial by-product, has typically seen little utilization 

in bound applications, such as in concrete as an aggregate, but has often been used a high-

quality frictional aggregate in asphalt pavement surface courses. In recent years, roadway 

reconstruction and rehabilitation initiatives have produced significant amounts of reclaimed 

asphalt pavement (RAP) containing SFS aggregates, and there is presently few allowable 

applications for the use of SFS RAP in the United States.  

This study primarily investigated the potential of using coarse fractionated reclaimed 

asphalt pavement (FRAP) with SFS aggregates as a partial replacement of the coarse 

aggregate in concrete. Initially, three SFS FRAP sources (the total aggregate of each 

roughly contained  one-third SFS) and three virgin SFS sources were evaluated for chemical 

and mineralogical composition, free calcium oxide (CaO) content, and expansion potential. 

Of the SFS FRAP sources, only one was evaluated as 20% and 50% replacements of the 

virgin aggregate in concrete, and this concrete was evaluated for strength (compression, 

split tension, and flexural), modulus, drying shrinkage, freeze/thaw durability, and fracture. 

Additionally, for comparison, two of the virgin SFS sources (one with high free CaO and the 

other with very low free CaO) were evaluated as 100% replacements of the coarse 

aggregate in concrete to determine the effects on strength, drying shrinkage, freeze/thaw 

durability, and fracture.  

 Based on the chemical and mineralogical tests, it was concluded that the virgin SFS 

compositions were similar to other SFS materials documented in the literature. Mineralogical 

testing confirmed that the SFS FRAP was composed of dolomite, SFS, and quartz. 

Complexometric titration using an ethylene glycol extraction technique in conjunction with 

thermogravimetric analysis was utilized to estimate the total free CaO content of each of the 

samples. The virgin SFS sources had free CaO ranging from <0.1% to 3.4% while the 

estimated free CaO contents of the SFS FRAP sources were about 1.0% to 1.5%. Using the 

results of the thermogravimetric analysis of SFS aggregates after autoclaving and assuming 

that all of the available free magnesium oxide (MgO) in the SFS fully hydrated, the free MgO 

content was estimated to range from 0.2% to 2.2% for the virgin SFS sources.  

Compacted aggregate samples were autoclaved with steam at 300 psi and 420°F for 

three hours. Additional SFS mineralogical testing confirmed that expansion was being 

caused by the hydration of the free CaO and free MgO. An additional mineralogical phase 

change was noted as the conversion from β-dicalcium silicate (larnite) to γ-dicalcium silicate 

(calcio-olivine), which in some instances resulted in the disintegration of the SFS particle as 

there is a slight increase in unit cell volume associated with this phase change. In particular, 

this phase change was visibly evident with the SFS FRAP. The virgin SFS and the SFS 

FRAP with the asphalt coating removed experienced significant expansion (1% to 9%), 

except for the virgin SFS source with only <0.1% free CaO, which expanded by only 0.1%. 

In comparison, all SFS FRAP sources with the asphalt intact experienced a contraction 

rather than an expansion, which was partially due to some of the asphalt binder filling the 

voids between aggregates as well as the some of the SFS particles disintegrating from the 

β- to γ-dicalcium silicate phase change. These findings suggest that, for two of the three 

SFS FRAP sources, the asphalt coating prevents or hinders the hydration of the free 



157 

 

expansive oxide phases (for one of these sources, stockpile weathering after milling may 

have resulted in minimal expansion), while for the third SFS FRAP source, the expansion of 

the free oxides was offset by the contraction as a result of the asphalt and dicalcium silicate 

phase conversion.  

In concrete, the SFS FRAP as a partial coarse aggregate replacement performed 

comparably to dolomite FRAP. The strength (compressive, split tensile, and flexural) was 

similar to, and in some instances not statistically different from, the strength of concrete with 

the same content of dolomite FRAP. The concrete modulus of elasticity with SFS FRAP was 

slightly higher than dolomite FRAP because of the stiffer SFS aggregates. Concrete with 

SFS FRAP aggregates experienced slightly greater shrinkage than concrete with dolomite 

aggregates, resulting in statistically higher shrinkage strains at later ages, although the 

shrinkage magnitude was still acceptable for conventional paving concrete. Concrete with 

SFS FRAP had some statistically similar fracture properties to dolomite concrete, namely 

the total fracture energy and the critical stress intensity factor. The freeze/thaw durability 

showed acceptable performance after 300 freeze/thaw cycles, with net durability factors of 

101% and 80% for the 20% and 50% SFS FRAP mixes, respectively, although continuing 

past 300 cycles to 336 cycles significantly reducing the net durability factors to 88% and 

53% for the 20% and 50% SFS FRAP mixes, respectively. This reduction in freeze/thaw 

durability is suspected to be due to the asphalt coating on the FRAP and not the SFS 

aggregate in the FRAP.  

Concrete mixtures were also tested with 100% coarse virgin SFS, evaluating the 

effects of the SFS with high (3.4%) and low (<0.1%) free CaO contents. The compressive 

and split tensile strengths were lower than dolomite concrete, with the exception of the low 

free CaO SFS concrete compressive strength. The drying shrinkage of the concrete with 

SFS was statistically greater than dolomite concrete possibly because of the porous nature 

of the SFS aggregates and different aggregate source gradations. Relative to the dolomite 

concrete, the concrete fracture properties were statistically greater for the low free CaO 

SFS, while only the critical stress intensity factor was greater for the concrete with high free 

CaO SFS,. The freeze/thaw durability was unaffected by the free CaO content of the SFS, 

resulting in a durability factor of around 100% after 300 freeze/thaw cycles.  

The main conclusions drawn from this study are the following: (1) SFS FRAP can 

contain significant amounts of free expansive oxides (CaO and MgO) even after weathering; 

(2) despite residual free expansive oxide contents, the autoclave testing of SFS FRAP 

produces minimal expansion, which can be misleading; (3) concrete performance with up to 

50% SFS FRAP is suitable and similar to concrete with dolomite FRAP, indicating that the 

presence of the SFS in the FRAP is not detrimental to the concrete strength and durability; 

(4) concrete strength and durability with 100% virgin SFS (up to 3.4% free CaO) is 

acceptable; (5) virgin SFS free oxide content and expansion tests should be run before 

accepting them to make sure they are being used in the correct application. 
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